CHAOTIC AND PERIODIC BEHAVIOR IN A FRACTIONAL-ORDER BIOLOGICAL SYSTEM

被引:1
|
作者
Roy-Layinde, T. O. [1 ]
Omoteso, K. A. [1 ]
Ogooluwa, D. O. [1 ]
Oladunjoye, H. T. [1 ]
Laoye, J. A. [1 ]
机构
[1] Olabisi Onabanjo Univ, Dept Phys, Ago Iwoye, Nigeria
来源
ACTA PHYSICA POLONICA B | 2020年 / 51卷 / 09期
关键词
DIFFERENTIAL-EQUATIONS; COUPLED SYSTEM; ATTRACTORS;
D O I
10.5506/APhysPolB.51.1885
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigated the effects of variation in the non-integer order of a fractional differential equation modeling activated enzyme molecules in brain wave. The dynamical changes in the system trajectories in both the chaotic and the periodic regimes of an existing second order differential equation model are numerically examined when the orders of the biological system are assigned non-integer values. The simulation showed that the dynamics of the system can be altered through the order of the derivatives. In particular, the integer-order system can be driven from chaotic oscillation into periodic state by adopting an appropriate non-integer orders when the system is associated with innate memory.
引用
收藏
页码:1885 / 1904
页数:20
相关论文
共 50 条
  • [1] The Synchronization of a fractional-order chaotic system
    Zhang Fan-di
    ENGINEERING SOLUTIONS FOR MANUFACTURING PROCESSES, PTS 1-3, 2013, 655-657 : 1488 - 1491
  • [2] CHAOTIC BEHAVIOR IN A FRACTIONAL-ORDER SYSTEM CONTAINING A CONTINUOUS ORDER-DISTRIBUTION
    Hartley, Tom T.
    Lorenzo, Carl F.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (10):
  • [3] Determining the chaotic behavior in a fractional-order finance system with negative parameters
    Tacha, O. I.
    Munoz-Pacheco, J. M.
    Zambrano-Serrano, E.
    Stouboulos, I. N.
    Pham, V. -T.
    NONLINEAR DYNAMICS, 2018, 94 (02) : 1303 - 1317
  • [4] CHAOTIC BEHAVIOR IN A NEW FRACTIONAL-ORDER LOVE TRIANGLE SYSTEM WITH COMPETITION
    Liu, Wenjun
    Chen, Kewang
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2015, 5 (01): : 103 - 113
  • [5] Determining the chaotic behavior in a fractional-order finance system with negative parameters
    O. I. Tacha
    J. M. Munoz-Pacheco
    E. Zambrano-Serrano
    I. N. Stouboulos
    V.-T. Pham
    Nonlinear Dynamics, 2018, 94 : 1303 - 1317
  • [6] Control fractional-order continuous chaotic system via a simple fractional-order controller
    Zhang, Dong
    Yang, Shou-liang
    INDUSTRIAL INSTRUMENTATION AND CONTROL SYSTEMS II, PTS 1-3, 2013, 336-338 : 770 - 773
  • [7] Numerical analysis of a fractional-order chaotic system based on conformable fractional-order derivative
    He, Shaobo
    Sun, Kehui
    Mei, Xiaoyong
    Yan, Bo
    Xu, Siwei
    EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (01):
  • [8] Chaotic Dynamics of Fractional-Order Liu System
    Gao, Xin
    RECENT TRENDS IN MATERIALS AND MECHANICAL ENGINEERING MATERIALS, MECHATRONICS AND AUTOMATION, PTS 1-3, 2011, 55-57 : 1327 - 1331
  • [9] The analysis and application on a fractional-order chaotic system
    Zhou, Lihua
    Qian, Ye
    Liu, Lingliang
    Telkomnika (Telecommunication Computing Electronics and Control), 2014, 12 (01) : 23 - 32
  • [10] Numerical analysis of a fractional-order chaotic system based on conformable fractional-order derivative
    Shaobo He
    Kehui Sun
    Xiaoyong Mei
    Bo Yan
    Siwei Xu
    The European Physical Journal Plus, 132