CURE MODEL WITH CURRENT STATUS DATA

被引:0
作者
Ma, Shuangge [1 ]
机构
[1] Yale Univ, Dept Epidemiol & Publ Hlth, New Haven, CT 06520 USA
关键词
Cure model; current status data; M-estimator; MIXTURE MODEL; LIKELIHOOD-ESTIMATION; HAZARDS REGRESSION;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Current status data arise when only random censoring time and event status at censoring are observable. We consider current status data under the cure model, where a proportion of the subjects are not susceptible to the event of interest. We assume a generalized linear model for the cure probability. For subjects not cured, the linear and partly linear Cox proportional hazards models are used to model the survival risk. We propose estimation using the (penalized) maximum likelihood approach. It is shown that estimates of the parametric regression coefficients are root n consistent, asymptotically normal and efficient. The nonparametric baseline function and nonparametric covariate effect can be estimated with n(1/3) convergence rate. We propose inference for estimates of the regression coefficients using the weighted bootstrap. Simulation studies are used to assess finite sample performance of the proposed estimates. We analyze the Calcification data using the proposed approach.
引用
收藏
页码:233 / 249
页数:17
相关论文
共 34 条
[1]  
[Anonymous], 1998, ASYMPTOTIC STAT, DOI DOI 10.1017/CBO9780511802256
[2]   Parametric spatial cure rate models for interval-censored time-to-relapse data [J].
Banerjee, S ;
Carlin, BP .
BIOMETRICS, 2004, 60 (01) :268-275
[3]  
Barlow R. E., 1972, Statistical inference under order restrictions
[4]   Analysis of clustered and interval censored data from a community-based study in asthma [J].
Bellamy, SL ;
Yi, L ;
Ryan, LM ;
Lipsitz, S ;
Canner, MJ ;
Wright, R .
STATISTICS IN MEDICINE, 2004, 23 (23) :3607-3621
[5]   A new joint model for longitudinal and survival data with a cure fraction [J].
Chen, MH ;
Ibrahim, JG ;
Sinha, D .
JOURNAL OF MULTIVARIATE ANALYSIS, 2004, 91 (01) :18-34
[6]  
COX DR, 1972, J R STAT SOC B, V34, P187
[7]   Maximum likelihood estimation in a semiparametric logistic/proportional-hazards mixture model [J].
Fang, HB ;
Li, G ;
Sun, JG .
SCANDINAVIAN JOURNAL OF STATISTICS, 2005, 32 (01) :59-75
[8]   MIXTURE-MODELS IN SURVIVAL ANALYSIS - ARE THEY WORTH THE RISK [J].
FAREWELL, VT .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1986, 14 (03) :257-262
[9]  
GART JJ, 1986, IARC SCI PUBLICATION, V79
[10]  
Groeneboom, 1992, INFORM BOUNDS NONPAR