Characterization on the thermal runaway of commercial 18650 lithium-ion batteries used in electric vehicle

被引:51
作者
Duh, Yih-Shing [1 ,2 ]
Tsai, Meng-Ting [2 ]
Kao, Chen-Shan [2 ]
机构
[1] Jen Teh Jr Coll Med Nursing & Management, Dept Occupat Safety & Hlth, Miaoli, Taiwan
[2] Natl United Univ, Dept Safety Hlth & Environm Engn, Miaoli, Taiwan
关键词
Lithium-ion battery; Thermal runaway; Confinement test; Self-heat rate; CATHODE MATERIALS; ORGANIC CARBONATES; RATE CALORIMETER; METAL-OXIDE; ABUSE; INSTABILITIES; BEHAVIORS; STABILITY; SAFETY; POINT;
D O I
10.1007/s10973-016-5767-1
中图分类号
O414.1 [热力学];
学科分类号
摘要
Panasonic 18650A and 18650B lithium-ion batteries at full-charged state are conducted to run through thermal runaway by confinement tests. Exothermic features such as onset temperature (T (onset)), crucial temperature (T (cr)), maximum self-heat rate (dT/dt)(max), maximum temperature (T (max)) and maximum pressure (P (max)) are measured and assessed. Most of the maximum temperatures within the batteries under thermal runaway exceed both 800 A degrees C and auto-ignition temperature of organic carbonates to ignite the flammable vapors of the electrolytes in the air. Adiabatic temperature rise is measured to be (775 +/- 116) A degrees C which equates to the enthalpy changes of (30.9 +/- 4.6) kJ without adopting the correction of thermal inertia. Maximum self-heat rates are determined to be in the range from 17,610 to 27,594 A degrees C min(-1). Panasonic 18650A and 18650B lithium-ion batteries shall carry the calamitous characteristics under thermal runaway if they rise above the crucial temperature of (188.0 +/- 4.4) A degrees C. Averaged enthalpy change caused by thermal runaway of a Panasonic 18650 lithium-ion battery is comparable to the equivalence of heat released by 0.71 grams of gasoline under combustion.
引用
收藏
页码:983 / 993
页数:11
相关论文
共 32 条
[1]   Thermal modeling and design considerations of lithium-ion batteries [J].
Al Hallaj, S ;
Maleki, H ;
Hong, JS ;
Selman, JR .
JOURNAL OF POWER SOURCES, 1999, 83 (1-2) :1-8
[2]  
[Anonymous], E47687 ASTM
[3]   Thermal stability of LixCoO2 cathode for lithium ion battery [J].
Baba, Y ;
Okada, S ;
Yamaki, J .
SOLID STATE IONICS, 2002, 148 (3-4) :311-316
[4]   On safety of lithium-ion cells [J].
Biensan, P ;
Simon, B ;
Pérès, JP ;
de Guibert, A ;
Broussely, M ;
Bodet, JM ;
Perton, F .
JOURNAL OF POWER SOURCES, 1999, 81 :906-912
[5]   Thermal and electrochemical behaviour of C/LixCoO2 cell during safety test [J].
Doh, Chil-Hoon ;
Kim, Dong-Hun ;
Kim, Hyo-Suck ;
Shin, Hye-Min ;
Jeong, Young-Dong ;
Moon, Seong-In ;
Jin, Bong-Soo ;
Eom, Seung Wook ;
Kim, Hyun-Soo ;
Kim, Ki-Won ;
Oh, Dae-Hee ;
Veluchamy, Angathevar .
JOURNAL OF POWER SOURCES, 2008, 175 (02) :881-885
[6]   Quantitative studies on the thermal stability of the interface between graphite electrode and electrolyte [J].
Doi, Takayuki ;
Zhao, Liwei ;
Zhou, Mingjiong ;
Okada, Shigeto ;
Yamaki, Jun-ichi .
JOURNAL OF POWER SOURCES, 2008, 185 (02) :1380-1385
[7]   Novel validation on pressure as a determination of onset point for exothermic decomposition of DTBP [J].
Duh, Yih-Shing ;
Wang, Wen-Fang ;
Kao, Chen-Shan .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2014, 116 (03) :1233-1239
[8]  
Duh YS, 2014, J THERM ANAL CALORIM, V116, P1105, DOI 10.1007/s10973-014-3636-3
[9]   Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes [J].
Golubkov, Andrey W. ;
Fuchs, David ;
Wagner, Julian ;
Wiltsche, Helmar ;
Stangl, Christoph ;
Fauler, Gisela ;
Voitic, Gernot ;
Thaler, Alexander ;
Hacker, Viktor .
RSC ADVANCES, 2014, 4 (07) :3633-3642
[10]   Evaluation of thermal hazard for commercial 14500 lithium-ion batteries [J].
Hsieh, Tsai-Ying ;
Duh, Yih-Shing ;
Kao, Chen-Shan .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2014, 116 (03) :1491-1495