THREE-DIMENSIONAL SEMI-SYMMETRIC HOMOGENEOUS LORENTZIAN MANIFOLDS

被引:8
作者
Calvaruso, G. [1 ]
机构
[1] Univ Lecce, Dipartimeiao Matemat E De Giorgi, I-73100 Lecce, Italy
关键词
Lorentzian homogeneous spaces; semi-symmetric spaces; symmetric spaces;
D O I
10.1007/s10474-008-7194-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Because of the different possible forms (Segre types) of the Ricci operator, semi-symmetry assumption for the curvature of a Lorentzian manifold turns out to have very different consequences with respect to the Riemannian case. In fact, a semi-symmetric homogeneous Riemannian manifold is, necessarily symmetric, while we find some three-dimensional homogeneous Lorentzian manifolds which are semi-symmetric but not symmetric. The complete classification of three-dimensional semi-symmetric homogeneous Lorentzian manifolds is obtained.
引用
收藏
页码:157 / 170
页数:14
相关论文
共 16 条
[1]   When is the unit tangent sphere bundle semi-symmetric? [J].
Boeckx, E ;
Calvaruso, G .
TOHOKU MATHEMATICAL JOURNAL, 2004, 56 (03) :357-366
[2]  
Boeckx E., 1993, ARCH MATH-BRNO, V29, P235
[3]  
Boeckx Eric, 1996, Riemannian Manifolds of Conullity Two
[4]   Three-dimensional Lorentz metrics and curvature homogeneity of order one [J].
Bueken, P ;
Djoric, M .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2000, 18 (01) :85-103
[5]   Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds [J].
Calvaruso, G. .
GEOMETRIAE DEDICATA, 2007, 127 (01) :99-119
[6]  
Calvaruso G., 1997, Z ANAL ANWEND, V16, P789
[7]   Pseudo-Riemannian 3-manifolds with prescribed distinct constant Ricci eigenvalues [J].
Calvaruso, Giovanni .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2008, 26 (04) :419-433
[8]   Homogeneous structures on three-dimensional Lorentzian manifolds [J].
Calvaruso, Giovanni .
JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (04) :1279-1291
[9]  
Cordero L. A., 1997, REND MAT APPL, V17, P129
[10]  
DEPREZ J, 1989, CHINESE J MATH, V17, P51