Generalized solution of a kind of nonparametric curvature evolution with boundary condition

被引:3
作者
Chen, L [1 ]
Liu, HZ
机构
[1] Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Hebei Univ Technol, Dept Appl Math, Tianjin 300130, Peoples R China
关键词
Gauss curvature; first initial-boundary problem; generalized solution; convex-monotone function;
D O I
10.1007/s10114-005-0570-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence and uniqueness of the generalized solution for a kind of nonparametric curvature flow problem are obtained. This kind of curvature flow problem describes the evolution of graphs with speed depending on the reciprocal of the Gauss curvature.
引用
收藏
页码:455 / 468
页数:14
相关论文
共 11 条
[1]  
Aleksandrov A. D., 1958, VESTNIK LENINGR MMA, V1, P5
[2]  
BAKELMAN IY, 1982, P SEM MONG AMP EQ RE, P1
[3]   Convex-monotone functions and generalized solution of parabolic Monge-Ampere equation [J].
Chen, L ;
Wang, GL ;
Lian, SZ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 186 (02) :558-571
[4]   On the incorporation of time-delay regularization into curvature-based diffusion [J].
Chen, YM ;
Bose, P .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2001, 14 (02) :149-164
[5]   NON-PARAMETRIC MEAN-CURVATURE EVOLUTION WITH BOUNDARY-CONDITIONS [J].
HUISKEN, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 77 (02) :369-378
[6]  
LIU B, 2002, FUZZY OPTIM DECIS MA, V1, P43
[8]  
OLIKER V, 1993, COMMUN PUR APPL MATH, V46, P75
[9]   ON AN ALEKSANDROV-BAKELMAN TYPE MAXIMUM PRINCIPLE FOR 2ND-ORDER PARABOLIC EQUATIONS [J].
TSO, K .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1985, 10 (05) :543-553
[10]  
WANG GL, 2000, CHINESE J CONT MATH, V21, P273