Existence and multiplicity results for a semilinear elliptic problem

被引:4
作者
Castro, Alfonso [1 ]
Cossio, Jorge [2 ]
Herron, Sigifredo [2 ]
Velez, Carlos [2 ]
机构
[1] Harvey Mudd Coll, Dept Math, Claremont, CA 91711 USA
[2] Univ Nacl Colombia Sede Medellin, Escuela Matemat, Apartado Aereo 3840, Medellin, Colombia
关键词
Semilinear elliptic equation; Variational methods; Local degree; A priori estimates; LINEAR DIRICHLET PROBLEM; OPERATOR-EQUATIONS;
D O I
10.1016/j.jmaa.2019.03.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we establish sufficient conditions for an asymptotically linear elliptic boundary value problem to have at least five solutions when the range of the derivative of the nonlinearity includes at least the first two eigenvalues. We make extensive use of variational methods and characterizations of the local degree of critical points. Furthermore, uniqueness and qualitative properties of the solutions are investigated. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:1493 / 1501
页数:9
相关论文
共 22 条
[1]   A NOTE ON DEGREE THEORY FOR GRADIENT MAPPINGS [J].
AMANN, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 85 (04) :591-595
[2]   COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS [J].
AMBROSETTI, A ;
BREZIS, H ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :519-543
[3]  
Bartsch T., 1996, Topol. Methods Nonlinear Anal., V7, P115
[4]  
BREZIS H, 1993, CR ACAD SCI I-MATH, V317, P465
[5]   SUBLINEAR ELLIPTIC-EQUATIONS IN RN [J].
BREZIS, H ;
KAMIN, S .
MANUSCRIPTA MATHEMATICA, 1992, 74 (01) :87-106
[6]   MULTIPLE SOLUTIONS FOR A NONLINEAR DIRICHLET PROBLEM [J].
CASTRO, A ;
COSSIO, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (06) :1554-1561
[7]   On multiple solutions of a nonlinear Dirichlet problem [J].
Castro, A ;
Cossio, J ;
Neuberger, JM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (06) :3657-3662
[8]  
Castro A., 1998, ELECT J DIFFERENTIAL, V70, P1
[9]  
Castro A., 1979, Ann. Mat. Pura Appl. (4), V120, P113
[10]   Existence of seven solutions for an asymptotically linear Dirichlet problem without symmetries [J].
Castro, Alfonso ;
Cossio, Jorge ;
Velez, Carlos .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2013, 192 (04) :607-619