Strong asymptotic convergence of evolution equations governed by maximal monotone operators with Tikhonov regularization

被引:49
作者
Cominetti, R. [2 ,3 ]
Peypouquet, J. [1 ]
Sorin, S. [4 ,5 ]
机构
[1] Univ Tecn Feder Santa Maria, Valparaiso, Chile
[2] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[3] Univ Chile, Ctr Modelamiento Matemat, Santiago, Chile
[4] Univ Paris 06, Equipe Combinatoire & Optimisat, UFR 929, F-75013 Paris, France
[5] Ecole Polytech, Lab Econometrie, F-91128 Palaiseau, France
关键词
Maximal monotone operators; Tikhonov regularization;
D O I
10.1016/j.jde.2008.08.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Tikhonov-like dynamics -(u) over dot(t) is an element of A(u(t)) + epsilon(t)u(t) where A is a maximal monotone operator on a Hilbert space and the parameter function epsilon(t) tends to 0 as t -> infinity with integral(infinity)(0)epsilon(t) dt = infinity. When A is the subdifferential of a closed proper convex function f, we establish strong convergence of u(t) towards the least-norm minimizer of f. In the general case we prove strong convergence towards the least-norm point in A(-1)(0) provided that the function epsilon(t) has bounded variation, and provide a counterexample when this property fails. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:3753 / 3763
页数:11
相关论文
共 36 条
[1]  
ALVAREZ F, 2007, CMMB0708190
[2]  
ALVAREZ F, 2007, CMMB0708191
[3]  
[Anonymous], 1976, P S PURE MATH 2
[4]  
[Anonymous], 1974, METHODES RESOLUTION
[5]  
Attouch H., 1978, Nonlinear Analysis Theory, Methods & Applications, V2, P329, DOI 10.1016/0362-546X(78)90021-4
[6]   A dynamical approach to convex minimization coupling approximation with the steepest descent method [J].
Attouch, H ;
Cominetti, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 128 (02) :519-540
[7]   ASYMPTOTIC-BEHAVIOR OF SOLUTION TO HILBERT-SPACE PROBLEM - EXAMPLE [J].
BAILLON, JB .
JOURNAL OF FUNCTIONAL ANALYSIS, 1978, 28 (03) :369-376
[8]   A convergence result for nonautonomous subgradient evolution equations and its application to the steepest descent exponential penalty trajectory in linear programming [J].
Baillon, JB ;
Cominetti, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 187 (02) :263-273
[9]  
BAILLON JB, 1976, HOUSTON J MATH, V2, P5
[10]   A new proximal point iteration that converges weakly but not in norm [J].
Bauschke, HH ;
Burke, JV ;
Deutsch, FR ;
Hundal, HS ;
Vanderwerff, JD .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (06) :1829-1835