Rational conformal field theories with G2 holonomy -: art. no. 008

被引:0
作者
Roiban, R [1 ]
Walcher, J
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Inst Theoret Phys, Santa Barbara, CA 93106 USA
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2001年 / 12期
关键词
superstrings and heterotic strings; conformal field models in string theory;
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study conformal field theories for strings propagating on compact, seven-dimensional manifolds with G(2) holonomy. In particular, we describe the construction of rational examples of such models. We argue that analogues of Gepner models are to be constructed based not on N = 1 minimal models, but on Z(2) orbifolds of N = 2 models. In Z(2) orbifolds of Gepner models times a circle, it turns out that unless all levels are even, there are no new Ramond ground states from twisted sectors. In examples such as the quintic Calabi-Yau, this reflects the fact that the classical geometric orbifold singularity can not be resolved without violating G(2) holonomy. We also comment on supersymmetric boundary states in such theories, which correspond to D-branes wrapping supersymmetric cycles in the geometry.
引用
收藏
页数:15
相关论文
共 33 条
  • [1] [Anonymous], HEPTH0002222
  • [2] Supersymmetric cycles in exceptional holonomy manifolds and Calabi-Yau four-folds
    Becker, K
    Bekcer, M
    Morrison, DR
    Ooguri, H
    Oz, Y
    Yin, Z
    [J]. NUCLEAR PHYSICS B, 1996, 480 (1-2) : 225 - 238
  • [3] Large N limit of orbifold field theories
    Bershadsky, M
    Johansen, A
    [J]. NUCLEAR PHYSICS B, 1998, 536 (1-2) : 141 - 148
  • [4] Birke Lothar, 1999, ADV THEOR MATH PHYS, V3, P671, DOI [10.4310/ATMP.1999.v3.n3.a8, DOI 10.4310/ATMP.1999.V3.N3.A8]
  • [5] Blumenhagen R, 2001, J HIGH ENERGY PHYS
  • [6] D-branes on the quintic
    Brunner, I
    Douglas, MR
    Lawrence, A
    Römelsberger, C
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2000, (08): : 9 - 72
  • [7] ON THE CONSTRUCTION OF SOME COMPLETE METRICS WITH EXCEPTIONAL HOLONOMY
    BRYANT, RL
    SALAMON, SM
    [J]. DUKE MATHEMATICAL JOURNAL, 1989, 58 (03) : 829 - 850
  • [8] METRICS WITH EXCEPTIONAL HOLONOMY
    BRYANT, RL
    [J]. ANNALS OF MATHEMATICS, 1987, 126 (03) : 525 - 576
  • [9] BOUNDARY-CONDITIONS, FUSION RULES AND THE VERLINDE FORMULA
    CARDY, JL
    [J]. NUCLEAR PHYSICS B, 1989, 324 (03) : 581 - 596
  • [10] THE OPERATOR ALGEBRA OF ORBIFOLD MODELS
    DIJKGRAAF, R
    VAFA, C
    VERLINDE, E
    VERLINDE, H
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 123 (03) : 485 - 526