Harnack estimates for conjugate heat kernel on evolving manifolds

被引:16
作者
Cao, Xiaodong [1 ]
Guo, Hongxin [2 ]
Hung Tran [3 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
[2] Wenzhou Univ, SMIS, Wenzhou 325035, Zhejiang, Peoples R China
[3] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
关键词
GEOMETRIC FLOWS; RICCI FLOW; ENTROPY;
D O I
10.1007/s00209-015-1479-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we derive Harnack estimates for conjugate heat kernel in an abstract geometric flow. Our calculation involves a correction term D. When D is nonnegative, we are able to obtain a Harnack inequality. Our abstract formulation provides a unified framework for some known results, in particular including corresponding results of Ni (J Geom Anal 14(1): 87-100, 2004), Perelman (arXiv: math. DG/0211159, 2002) and Tran (arXiv: 1211.6448, 2012) as special cases. Moreover, it leads to new results in the setting of Ricci-Harmonic flow and mean curvature flow in Lorentzian manifolds with nonnegative sectional curvature.
引用
收藏
页码:201 / 214
页数:14
相关论文
共 50 条
[41]   PROPERTIES OF THE SOLUTIONS OF THE CONJUGATE HEAT EQUATIONS [J].
Hamilton, Richard ;
Sesum, Natasa .
AMERICAN JOURNAL OF MATHEMATICS, 2009, 131 (01) :153-169
[42]   DIFFERENTIAL HARNACK INEQUALITIES FOR NONLINEAR HEAT EQUATIONS WITH POTENTIALS UNDER THE RICCI FLOW [J].
Wu, Jia-Yong .
PACIFIC JOURNAL OF MATHEMATICS, 2012, 257 (01) :199-218
[43]   Heat kernel on Ricci shrinkers (II) [J].
Li, Yu ;
Wang, Bing .
ACTA MATHEMATICA SCIENTIA, 2024, 44 (05) :1639-1695
[44]   A probabilistic approach for gradient estimates on time-inhomogeneous manifolds [J].
Cheng, Li-Juan .
STATISTICS & PROBABILITY LETTERS, 2014, 88 :174-183
[45]   Li-Yau Estimates for a Nonlinear Parabolic Equation on Manifolds [J].
Zhu, Xiaorui ;
Li, Yi .
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2014, 17 (3-4) :273-288
[46]   Differential Harnack inequalities for heat equations with potentials under the Bernhard List's flow [J].
Fang, Shouwen .
GEOMETRIAE DEDICATA, 2012, 161 (01) :11-22
[47]   Heat Flow on Time-Dependent Manifolds [J].
Choi, Beomjun ;
Gao, Jianhui ;
Haslhofer, Robert ;
Sigal, Daniel .
JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (01)
[48]   Heat Flow on Time-Dependent Manifolds [J].
Beomjun Choi ;
Jianhui Gao ;
Robert Haslhofer ;
Daniel Sigal .
The Journal of Geometric Analysis, 2022, 32
[49]   Conjugate variables in analytic number theory. Phase space and Lagrangian manifolds [J].
V. P. Maslov ;
V. E. Nazaikinskii .
Mathematical Notes, 2016, 100 :421-428
[50]   Conjugate variables in analytic number theory. Phase space and Lagrangian manifolds [J].
Maslov, V. P. ;
Nazaikinskii, V. E. .
MATHEMATICAL NOTES, 2016, 100 (3-4) :421-428