Harnack estimates for conjugate heat kernel on evolving manifolds

被引:16
|
作者
Cao, Xiaodong [1 ]
Guo, Hongxin [2 ]
Hung Tran [3 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
[2] Wenzhou Univ, SMIS, Wenzhou 325035, Zhejiang, Peoples R China
[3] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
关键词
GEOMETRIC FLOWS; RICCI FLOW; ENTROPY;
D O I
10.1007/s00209-015-1479-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we derive Harnack estimates for conjugate heat kernel in an abstract geometric flow. Our calculation involves a correction term D. When D is nonnegative, we are able to obtain a Harnack inequality. Our abstract formulation provides a unified framework for some known results, in particular including corresponding results of Ni (J Geom Anal 14(1): 87-100, 2004), Perelman (arXiv: math. DG/0211159, 2002) and Tran (arXiv: 1211.6448, 2012) as special cases. Moreover, it leads to new results in the setting of Ricci-Harmonic flow and mean curvature flow in Lorentzian manifolds with nonnegative sectional curvature.
引用
收藏
页码:201 / 214
页数:14
相关论文
共 50 条
  • [1] Harnack estimates for conjugate heat kernel on evolving manifolds
    Xiaodong Cao
    Hongxin Guo
    Hung Tran
    Mathematische Zeitschrift, 2015, 281 : 201 - 214
  • [3] Harnack Estimates for Heat Equations with Potentials on Evolving Manifolds
    Abimbola Abolarinwa
    Mediterranean Journal of Mathematics, 2016, 13 : 3185 - 3204
  • [4] Harnack inequality and heat kernel estimates on manifolds with curvature unbounded below
    Arnaudon, M
    Thalmaier, A
    Wang, FY
    BULLETIN DES SCIENCES MATHEMATIQUES, 2006, 130 (03): : 223 - 233
  • [5] On the equivalence of parabolic Harnack inequalities and heat kernel estimates
    Barlow, Martin T.
    Grigor'yan, Alexander
    Kumagai, Takashi
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2012, 64 (04) : 1091 - 1146
  • [6] Harnack inequalities and heat kernel estimates for SDEs with singular drifts
    Shao, Jinghai
    BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (05): : 589 - 601
  • [7] Heat kernel estimates with application to compactness of manifolds
    Gong, FZ
    Wang, FY
    QUARTERLY JOURNAL OF MATHEMATICS, 2001, 52 : 171 - 180
  • [9] Gaussian upper bounds for the heat kernel on evolving manifolds
    Buzano, Reto
    Yudowitz, Louis
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2023, 108 (05): : 1747 - 1768
  • [10] Heat kernel estimates and parabolic Harnack inequalities for symmetric Dirichlet forms
    Chen, Zhen-Qing
    Kumagi, Takashi
    Wang, Jian
    ADVANCES IN MATHEMATICS, 2020, 374