Determination of fracture toughness of AZ31 Mg alloy using the cohesive finite element method

被引:43
作者
Guo, X. [1 ,2 ]
Chang, K. [3 ]
Chen, L. Q. [3 ]
Zhou, M. [4 ]
机构
[1] Tianjin Univ, Sch Mech Engn, Tianjin 300072, Peoples R China
[2] Tianjin Key Lab Nonlinear Dynam & Chaos Control, Tianjin 300072, Peoples R China
[3] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[4] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
Fracture toughness; Cohesive finite element method; Microstructure; Plasticity; Mg alloy; POLYCRYSTALLINE BRITTLE MATERIALS; DYNAMIC CRACK-GROWTH; GRAIN LEVEL MODEL; PHASE-FIELD MODEL; COMPUTER-SIMULATION; NANOCRYSTALLINE MATERIALS; DIMENSIONS; NUMERICAL SIMULATIONS; FAILURE INITIATION; MAGNESIUM ALLOY;
D O I
10.1016/j.engfracmech.2012.08.014
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The objective of this study is to develop a micromechanical approach for determining the fracture toughness. A phase-field model for grain growth is employed to generate microstructures with varying attributes and the cohesive finite element method is employed to quantify the interaction between a propagating crack and microstructures of an AZ31 Mg alloy. Simulations show that fracture toughness increases as the average grain size decreases and that the local crack tip environment significantly affects the fracture behavior. Dramatically different dependences of fracture toughness on overall strain rate are seen when two different types of cohesive laws are employed. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:401 / 415
页数:15
相关论文
共 46 条
[1]  
ABAQUS, 2008, ABAQUS THEOR MAN US
[2]   COMPUTER-SIMULATION OF GRAIN-GROWTH .1. KINETICS [J].
ANDERSON, MP ;
SROLOVITZ, DJ ;
GREST, GS ;
SAHNI, PS .
ACTA METALLURGICA, 1984, 32 (05) :783-791
[3]  
Anderson T., 1995, FRACTURE MECH FUNDAM, P453
[4]  
[Anonymous], 2001, E399 ASTM
[5]   Current wrought magnesium alloys: Strengths and weaknesses [J].
Bettles, CJ ;
Gibson, MA .
JOM, 2005, 57 (05) :46-49
[6]   Computational modelling of impact damage in brittle materials [J].
Camacho, GT ;
Ortiz, M .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1996, 33 (20-22) :2899-2938
[7]   On the elastic-viscoplastic behavior of nanocrystalline materials [J].
Capolungo, L. ;
Cherkaoui, M. ;
Qu, J. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2007, 23 (04) :561-591
[8]   Homogenization method for strength and inelastic behavior of nanocrystalline materials [J].
Capolungo, L ;
Jochum, C ;
Cherkaoui, M ;
Qu, J .
INTERNATIONAL JOURNAL OF PLASTICITY, 2005, 21 (01) :67-82
[9]   COMPUTER-SIMULATION OF THE DOMAIN DYNAMICS OF A QUENCHED SYSTEM WITH A LARGE NUMBER OF NONCONSERVED ORDER PARAMETERS - THE GRAIN-GROWTH KINETICS [J].
CHEN, LQ ;
YANG, W .
PHYSICAL REVIEW B, 1994, 50 (21) :15752-15756
[10]   A FRAMEWORK TO CORRELATE A/W RATIO EFFECTS ON ELASTIC-PLASTIC FRACTURE-TOUGHNESS (JC) [J].
DODDS, RH ;
ANDERSON, TL ;
KIRK, MT .
INTERNATIONAL JOURNAL OF FRACTURE, 1991, 48 (01) :1-22