Wearable Internet-of-Things platform for human activity recognition and health care

被引:20
作者
Iqbal, Asif [1 ]
Ullah, Farman [2 ]
Anwar, Hafeez [2 ,3 ]
Rehman, Ata Ur [2 ]
Shah, Kiran [2 ]
Baig, Ayesha [2 ]
Ali, Sajid [2 ]
Yoo, Sangjo [1 ]
Kwak, Kyung Sup [1 ]
机构
[1] Inha Univ, Dept Informat & Commun Engn, Incheon 22212, South Korea
[2] COMSATS Univ Islamabad, Dept Elect Engn, Attock, Pakistan
[3] Friedrich Alexander Univ Erlangen Nurnberg, Interdisciplinary Ctr Digital Humanities & Social, Erlangen, Germany
基金
新加坡国家研究基金会;
关键词
Wearable Internet-of-Things; activity recognition; health and well-being; accelerometer; gyroscope; magnetometer; temperature sensor; pressure sensor; ACCELEROMETER DATA; PHYSICAL-ACTIVITY; SENSORS; MOBILE; SYSTEM;
D O I
10.1177/1550147720911561
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose to perform wearable sensors-based human physical activity recognition. This is further extended to an Internet-of-Things (IoT) platform which is based on a web-based application that integrates wearable sensors, smartphones, and activity recognition. To this end, a smartphone collects the data from wearable sensors and sends it to the server for processing and recognition of the physical activity. We collect a novel data set of 13 physical activities performed both indoor and outdoor. The participants are from both the genders where their number per activity varies. During these activities, the wearable sensors measure various body parameters via accelerometers, gyroscope, magnetometers, pressure, and temperature. These measurements and their statistical are then represented in features vectors that used to train and test supervised machine learning algorithms (classifiers) for activity recognition. On the given data set, we evaluate a number of widely known classifiers such random forests, support vector machine, and many others using the WEKA machine learning suite. Using the default settings of these classifiers in WEKA, we attain the highest overall classification accuracy of 90%. Consequently, such a recognition rate is encouraging, reliable, and effective to be used in the proposed platform.
引用
收藏
页数:14
相关论文
共 65 条
[41]   Intelligent positive computing with mobile, wearable, and IoT devices: Literature review and research directions [J].
Lee, Uichin ;
Han, Kyungsik ;
Cho, Hyunsung ;
Chung, Kyong-Mee ;
Hong, Hwajung ;
Lee, Sung-Ju ;
Noh, Youngtae ;
Park, Sooyoung ;
Carroll, John M. .
AD HOC NETWORKS, 2019, 83 :8-24
[42]  
Li C., 2017, Wearable Computing: Accelerometer-Based Human Activity Classification Using Decision Tree
[43]   Human activity recognition for video surveillance [J].
Lin, Weiyao ;
Sun, Ming-Ting ;
Poovandran, Radha ;
Zhang, Zhengyou .
PROCEEDINGS OF 2008 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-10, 2008, :2737-+
[44]   Agile 2006 research papers [J].
Maurer, Frank ;
Melnik, Grigorl .
AGILE 2006, PROCEEDINGS, 2006, :3-3
[45]   Daily Human Activities Recognition Using Heterogeneous Sensors from Smartphones [J].
Minh-Son Dao ;
Tuan-Anh Nguyen-Gia ;
Van-Cuong Mai .
8TH INTERNATIONAL CONFERENCE ON ADVANCES IN INFORMATION TECHNOLOGY, 2017, 111 :323-328
[46]   Wearable Sensors for Human Activity Monitoring: A Review [J].
Mukhopadhyay, Subhas Chandra .
IEEE SENSORS JOURNAL, 2015, 15 (03) :1321-1330
[47]   Data Collection and Wireless Communication in Internet of Things (IoT) Using Economic Analysis and Pricing Models: A Survey [J].
Nguyen Cong Luong ;
Hoang, Dinh Thai ;
Wang, Ping ;
Niyato, Dusit ;
Kim, Dong In ;
Han, Zhu .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2016, 18 (04) :2546-2590
[48]   Activity classification using realistic data from wearable sensors [J].
Pärkkä, J ;
Ermes, M ;
Korpipää, P ;
Mäntyjärvi, J ;
Peltola, J ;
Korhonen, I .
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2006, 10 (01) :119-128
[49]  
Pirttikangas S, 2006, LECT NOTES COMPUT SC, V4239, P516
[50]   Deep Learning for Health Informatics [J].
Ravi, Daniele ;
Wong, Charence ;
Deligianni, Fani ;
Berthelot, Melissa ;
Andreu-Perez, Javier ;
Lo, Benny ;
Yang, Guang-Zhong .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2017, 21 (01) :4-21