Demonstration of a stable ultrafast laser based on a nonlinear microcavity

被引:246
作者
Peccianti, M. [1 ,2 ,3 ]
Pasquazi, A. [1 ]
Park, Y. [1 ]
Little, B. E. [4 ]
Chu, S. T. [4 ,5 ]
Moss, D. J. [1 ,6 ,7 ]
Morandotti, R. [1 ]
机构
[1] INRS EMT, Varennes, PQ J3X 1S2, Canada
[2] UOS Roma, IPCF CNR, I-00185 Rome, Italy
[3] ISC CNR UOS Montelibretti, I-00185 Rome, Italy
[4] Infinera Ltd, Sunnyvale, CA 94089 USA
[5] City Univ Hong Kong, Dept Phys & Mat Sci, Hong Kong, Hong Kong, Peoples R China
[6] Univ Sydney, CUDOS, Sydney, NSW 2006, Australia
[7] Univ Sydney, IPOS, Sch Phys, Sydney, NSW 2006, Australia
来源
NATURE COMMUNICATIONS | 2012年 / 3卷
基金
加拿大自然科学与工程研究理事会; 澳大利亚研究理事会;
关键词
PASSIVE-MODE LOCKING; LINEWIDTH; GENERATION; OPTICS;
D O I
10.1038/ncomms1762
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ultrashort pulsed lasers, operating through the phenomenon of mode-locking, have had a significant role in many facets of our society for 50 years, for example, in the way we exchange information, measure and diagnose diseases, process materials, and in many other applications. Recently, high-quality resonators have been exploited to demonstrate optical combs. The ability to phase-lock their modes would allow mode-locked lasers to benefit from their high optical spectral quality, helping to realize novel sources such as precision optical clocks for applications in metrology, telecommunication, microchip-computing, and many other areas. Here we demonstrate the first mode-locked laser based on a microcavity resonator. It operates via a new mode-locking method, which we term filter-driven four-wave mixing, and is based on a CMOS-compatible high quality factor microring resonator. It achieves stable self-starting oscillation with negligible amplitude noise at ultrahigh repetition rates, and spectral linewidths well below 130 kHz.
引用
收藏
页数:6
相关论文
共 32 条
[1]   Multisoliton solutions of the complex Ginzburg-Landau equation [J].
Akhmediev, NN ;
Ankiewicz, A ;
SotoCrespo, JM .
PHYSICAL REVIEW LETTERS, 1997, 79 (21) :4047-4051
[2]   Dynamical thermal behavior and thermal self-stability of microcavities [J].
Carmon, T ;
Yang, L ;
Vahala, KJ .
OPTICS EXPRESS, 2004, 12 (20) :4742-4750
[3]   Nonlinear optics for high-speed digital information processing [J].
Cotter, D ;
Manning, RJ ;
Blow, KJ ;
Ellis, AD ;
Kelly, AE ;
Nesset, D ;
Phillips, ID ;
Poustie, AJ ;
Rogers, DC .
SCIENCE, 1999, 286 (5444) :1523-1528
[4]   AN IMPROVED DELAYED SELF-HETERODYNE INTERFEROMETER FOR LINEWIDTH MEASUREMENTS [J].
DAWSON, JW ;
PARK, N ;
VAHALA, KJ .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1992, 4 (09) :1063-1066
[5]   Full stabilization of a microresonator-based optical frequency comb [J].
Del'Haye, P. ;
Arcizet, O. ;
Schliesser, A. ;
Holzwarth, R. ;
Kippenberg, T. J. .
PHYSICAL REVIEW LETTERS, 2008, 101 (05)
[6]   Optical frequency comb generation from a monolithic microresonator [J].
Del'Haye, P. ;
Schliesser, A. ;
Arcizet, O. ;
Wilken, T. ;
Holzwarth, R. ;
Kippenberg, T. J. .
NATURE, 2007, 450 (7173) :1214-1217
[7]   Capacity Limits of Optical Fiber Networks [J].
Essiambre, Rene-Jean ;
Kramer, Gerhard ;
Winzer, Peter J. ;
Foschini, Gerard J. ;
Goebel, Bernhard .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2010, 28 (04) :662-701
[8]   Spectral line-by-line pulse shaping of on-chip microresonator frequency combs [J].
Ferdous, Fahmida ;
Miao, Houxun ;
Leaird, Daniel E. ;
Srinivasan, Kartik ;
Wang, Jian ;
Chen, Lei ;
Varghese, Leo Tom ;
Weiner, Andrew M. .
NATURE PHOTONICS, 2011, 5 (12) :770-776
[9]   Low power four wave mixing in an integrated, micro-ring resonator with Q=1.2 million [J].
Ferrera, M. ;
Duchesne, D. ;
Razzari, L. ;
Peccianti, M. ;
Morandotti, R. ;
Cheben, P. ;
Janz, S. ;
Xu, D. -X. ;
Little, B. E. ;
Chu, S. ;
Moss, D. J. .
OPTICS EXPRESS, 2009, 17 (16) :14098-14103
[10]   Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures [J].
Ferrera, M. ;
Razzari, L. ;
Duchesne, D. ;
Morandotti, R. ;
Yang, Z. ;
Liscidini, M. ;
Sipe, J. E. ;
Chu, S. ;
Little, B. E. ;
Moss, D. J. .
NATURE PHOTONICS, 2008, 2 (12) :737-740