Review of Microfluidic Devices and Imaging Techniques for Fluid Flow Study in Porous Geomaterials

被引:55
作者
Jahanbakhsh, Amir [1 ]
Wlodarczyk, Krystian L. [1 ,2 ]
Hand, Duncan P. [2 ]
Maier, Robert R. J. [2 ]
Maroto-Valer, M. Mercedes [1 ]
机构
[1] Heriot Watt Univ, Sch Engn & Phys Sci, Res Ctr Carbon Solut RCCS, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Heriot Watt Univ, Sch Engn & Phys Sci, Inst Photon & Quantum Sci, Edinburgh EH14 4AS, Midlothian, Scotland
基金
欧洲研究理事会;
关键词
microfluidic devices; micromodels; imaging techniques; porous media; geomaterials; pore-scale; transport phenomena; geoscience; geo-energy engineering; POSITRON-EMISSION-TOMOGRAPHY; RAY-FLUORESCENCE SPECTROMETRY; CALCITE DISSOLUTION KINETICS; CONTACT-ANGLE MEASUREMENTS; NEAR-MISCIBLE GAS; PORE-SCALE FLOW; X-RAY; 2-PHASE FLOW; NEUTRON TOMOGRAPHY; OIL-RECOVERY;
D O I
10.3390/s20144030
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Understanding transport phenomena and governing mechanisms of different physical and chemical processes in porous media has been a critical research area for decades. Correlating fluid flow behaviour at the micro-scale with macro-scale parameters, such as relative permeability and capillary pressure, is key to understanding the processes governing subsurface systems, and this in turn allows us to improve the accuracy of modelling and simulations of transport phenomena at a large scale. Over the last two decades, there have been significant developments in our understanding of pore-scale processes and modelling of complex underground systems. Microfluidic devices (micromodels) and imaging techniques, as facilitators to link experimental observations to simulation, have greatly contributed to these achievements. Although several reviews exist covering separately advances in one of these two areas, we present here a detailed review integrating recent advances and applications in both micromodels and imaging techniques. This includes a comprehensive analysis of critical aspects of fabrication techniques of micromodels, and the most recent advances such as embedding fibre optic sensors in micromodels for research applications. To complete the analysis of visualization techniques, we have thoroughly reviewed the most applicable imaging techniques in the area of geoscience and geo-energy. Moreover, the integration of microfluidic devices and imaging techniques was highlighted as appropriate. In this review, we focus particularly on four prominent yet very wide application areas, namely "fluid flow in porous media", "flow in heterogeneous rocks and fractures", "reactive transport, solute and colloid transport", and finally "porous media characterization". In summary, this review provides an in-depth analysis of micromodels and imaging techniques that can help to guide future research in the in-situ visualization of fluid flow in porous media.
引用
收藏
页码:1 / 63
页数:65
相关论文
共 348 条
[1]  
Adejumo O. O., 2012, Journal of Environmental Protection, V3, P1409, DOI 10.4236/jep.2012.311160
[2]   High-Resolution Temporo-Ensemble PIV to Resolve Pore-Scale Flow in 3D-Printed Fractured Porous Media [J].
Ahkami, Mehrdad ;
Roesgen, Thomas ;
Saar, Martin O. ;
Kong, Xiang-Zhao .
TRANSPORT IN POROUS MEDIA, 2019, 129 (02) :467-483
[3]  
Ahmadi-Senichault A., 2016, Diffusion Foundations, V7, P53, DOI 10.4028/www.scientific.net/DF.7.53
[4]  
Al-Mugheiry M., 2001, P SPE MIDDL E OIL SH
[5]   Automatic measurement of contact angle in pore-space images [J].
AlRatrout, Ahmed ;
Raeini, Ali Q. ;
Bijeljic, Branko ;
Blunt, Martin J. .
ADVANCES IN WATER RESOURCES, 2017, 109 :158-169
[6]   Running electroweak couplings as a probe of new physics [J].
Alves, Daniele S. M. ;
Galloway, Jamison ;
Ruderman, Joshua T. ;
Walsh, Jonathan R. .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (02) :1-42
[7]   Functionalisation of Polydimethylsiloxane (PDMS)-Microfluidic Devices coated with Rock Minerals [J].
Alzahid, Yara A. ;
Mostaghimi, Peyman ;
Gerami, Alireza ;
Singh, Ankita ;
Privat, Karen ;
Amirian, Tammy ;
Armstrong, Ryan T. .
SCIENTIFIC REPORTS, 2018, 8
[8]   Microfluidic Model Porous Media: Fabrication and Applications [J].
Anbari, Alimohammad ;
Chien, Hung-Ta ;
Datta, Sujit S. ;
Deng, Wen ;
Weitz, David A. ;
Fan, Jing .
SMALL, 2018, 14 (18)
[9]   MICROSCOPICAL TECHNIQUES WITH THE MOLECULAR OPTICS LASER EXAMINER RAMAN MICRO-PROBE [J].
ANDERSEN, ME ;
MUGGLI, RZ .
ANALYTICAL CHEMISTRY, 1981, 53 (12) :1772-1777
[10]   Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping [J].
Anderson, JR ;
Chiu, DT ;
Jackman, RJ ;
Cherniavskaya, O ;
McDonald, JC ;
Wu, HK ;
Whitesides, SH ;
Whitesides, GM .
ANALYTICAL CHEMISTRY, 2000, 72 (14) :3158-3164