Examining Tumor Phylogeny Inference in Noisy Sequencing Data

被引:0
作者
Tomlinson, Kiran [1 ]
Oesper, Layla [1 ]
机构
[1] Carleton Coll, Dept Comp Sci, Northfield, MN 55057 USA
来源
PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM) | 2018年
关键词
Cancer genomics; tumor phylogeny; evolution; CLONAL EVOLUTION; HETEROGENEITY; HISTORY; TREES;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A number of methods have recently been proposed to reconstruct the evolutionary history of a tumor from noisy DNA sequencing data. We investigate when and how well these histories can be reconstructed from multi-sample bulk sequencing data when considering only single nucleotide variants (SNVs). We formalize this as the Enumeration Variant Allele Frequency Factorization Problem and provide a novel proof for an upper bound on the number of possible phylogenies consistent with a given dataset. In addition, we propose and assess two methods for increasing the robustness and performance of an existing graph based phylogenetic inference method. We apply our approaches to noisy simulated data and find that low coverage and high noise make it more difficult to identify phylogenies. We also apply our methods to both chronic lymphocytic leukemia and clear cell renal cell carcinoma datasets.
引用
收藏
页码:36 / 43
页数:8
相关论文
共 50 条
  • [31] Phylogeny and the inference of evolutionary trajectories
    Hancock, Lillian
    Edwards, Erika J.
    [J]. JOURNAL OF EXPERIMENTAL BOTANY, 2014, 65 (13) : 3491 - 3498
  • [32] ConDoR: tumor phylogeny inference with a copy-number constrained mutation loss model
    Palash Sashittal
    Haochen Zhang
    Christine A. Iacobuzio-Donahue
    Benjamin J. Raphael
    [J]. Genome Biology, 24
  • [33] MLGO: phylogeny reconstruction and ancestral inference from gene-order data
    Hu, Fei
    Lin, Yu
    Tang, Jijun
    [J]. BMC BIOINFORMATICS, 2014, 15
  • [34] Integrative inference of subclonal tumour evolution from single-cell and bulk sequencing data
    Malikic, Salem
    Jahn, Katharina
    Kuipers, Jack
    Sahinalp, S. Cenk
    Beerenwinkel, Niko
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [35] Tumor heterogeneity assessed by sequencing and fluorescence in situ hybridization (FISH) data
    Lei, Haoyun
    Gertz, E. Michael
    Schaffer, Alejandro A.
    Fu, Xuecong
    Tao, Yifeng
    Heselmeyer-Haddad, Kerstin
    Torres, Irianna
    Li, Guibo
    Xu, Liqin
    Hou, Yong
    Wu, Kui
    Shi, Xulian
    Dean, Michael
    Ried, Thomas
    Schwartz, Russell
    [J]. BIOINFORMATICS, 2021, 37 (24) : 4704 - 4711
  • [36] INFERENCE ON A DISTRIBUTION FROM NOISY DRAWS
    Jochmans, Koen
    Weidner, Martin
    [J]. ECONOMETRIC THEORY, 2024, 40 (01) : 60 - 97
  • [37] HATCHet2: clone- and haplotype-specific copy number inference from bulk tumor sequencing data
    Myers, Matthew A.
    Arnold, Brian J.
    Bansal, Vineet
    Balaban, Metin
    Mullen, Katelyn M.
    Zaccaria, Simone
    Raphael, Benjamin J.
    [J]. GENOME BIOLOGY, 2024, 25 (01):
  • [38] Tree inference for single-cell data
    Jahn, Katharina
    Kuipers, Jack
    Beerenwinkel, Niko
    [J]. GENOME BIOLOGY, 2016, 17
  • [39] ddClone: joint statistical inference of clonal populations from single cell and bulk tumour sequencing data
    Salehi, Sohrab
    Steif, Adi
    Roth, Andrew
    Aparicio, Samuel
    Bouchard-Cote, Alexandre
    Shah, Sohrab P.
    [J]. GENOME BIOLOGY, 2017, 18
  • [40] Examining heterogeneity of stromal cells in tumor microenvironment based on pan-cancer single-cell RNA sequencing data
    Wang, Wenhui
    Wang, Li
    She, Junjun
    Zhu, Jun
    [J]. CANCER BIOLOGY & MEDICINE, 2022, 19 (01) : 30 - 42