Asymptotic Formulas with Error Estimates for Call Pricing Functions and the Implied Volatility at Extreme Strikes

被引:28
作者
Gulisashvili, Archil [1 ]
机构
[1] Ohio Univ, Dept Math, Athens, OH 45701 USA
来源
SIAM JOURNAL ON FINANCIAL MATHEMATICS | 2010年 / 1卷 / 01期
关键词
call and put pricing functions; implied volatility; asymptotic formulas; Pareto-type distributions; regularly varying functions; STOCHASTIC VOLATILITY; STOCK-PRICE; MODELS; BEHAVIOR;
D O I
10.1137/090762713
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
In this paper, we obtain asymptotic formulas with error estimates for the implied volatility associated with a European call pricing function. We show that these formulas imply Lee's moment formulas for the implied volatility and the tail-wing formulas due to Benaim and Friz. In addition, we analyze Pareto-type tails of stock price distributions in uncorrelated Hull-White, Stein-Stein, and Heston models and find asymptotic formulas with error estimates for call pricing functions in these models.
引用
收藏
页码:609 / 641
页数:33
相关论文
共 33 条
[1]  
[Anonymous], 2004, Stochastic Finance
[2]  
[Anonymous], SEMIPARAMETRIC MODEL
[3]  
[Anonymous], 2004, Statistics of extremes: theory and applications
[4]  
[Anonymous], 2008, INTRO STOCHASTIC CAL
[5]  
[Anonymous], 1998, VOLATILITY NEW ESTIM
[6]   REGULAR VARIATION AND SMILE ASYMPTOTICS [J].
Benaim, S. ;
Friz, P. .
MATHEMATICAL FINANCE, 2009, 19 (01) :1-12
[7]  
Benaim S, 2009, FRONTIERS QUANTITATI, P19
[8]   Smile asymptotics II: Models with known moment generating functions [J].
Benaim, Shalom ;
Friz, Peter .
JOURNAL OF APPLIED PROBABILITY, 2008, 45 (01) :16-32
[9]  
Bingham N.H., 1989, REGULAR VARIATION
[10]   Expensive martingales [J].
Buehler, Hans .
QUANTITATIVE FINANCE, 2006, 6 (03) :207-218