Radial symmetry of positive solutions to nonlinear polyharmonic Dirichlet problems

被引:42
作者
Berchio, Elvise [1 ]
Gazzola, Filippo [2 ]
Weth, Tobias [3 ]
机构
[1] Dipartimento Matemat, I-10123 Turin, Italy
[2] Dipartimento Matemat Politecn, I-20133 Milan, Italy
[3] Univ Giessen, Math Inst, D-35392 Giessen, Germany
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2008年 / 620卷
关键词
D O I
10.1515/CRELLE.2008.052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the symmetry result of Gidas-Ni-Nirenberg [12] to semilinear polyharmonic Dirichlet problems in the unit ball. In the proof we develop a new variant of the method of moving planes relying on fine estimates for the Green function of the polyharmonic operator. We also consider minimizers for subcritical higher order Sobolev embeddings. For embeddings into weighted spaces with a radially symmetric weight function, we show that the minimizers are at least axially symmetric. This result is sharp since we exhibit examples of minimizers which do not have full radial symmetry.
引用
收藏
页码:165 / 183
页数:19
相关论文
共 26 条
[1]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[2]  
Alexandrov, 1962, ANN MAT PUR APPL, V58, P303, DOI [10.1007/BF02413056, DOI 10.1007/BF02413056]
[3]   SPHERICAL REARRANGEMENTS, SUBHARMONIC FUNCTIONS, AND ]-FUNCTIONS IN N-SPACE [J].
BAERNSTEIN, A ;
TAYLOR, BA .
DUKE MATHEMATICAL JOURNAL, 1976, 43 (02) :245-268
[4]   Partial symmetry of least energy nodal solutions to some variational problems [J].
Bartsch, T ;
Weth, T ;
Willew, M .
JOURNAL D ANALYSE MATHEMATIQUE, 2005, 96 (1) :1-18
[5]  
BOGGIO T, 1905, REND CIRC MAT PALERM, V20, P97
[6]   An approach to symmetrization via polarization [J].
Brock, F ;
Solynin, AY .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (04) :1759-1796
[7]  
BROCK F, 2003, ELECT J DIFF EQU, V108
[8]   SYMMETRY PROPERTIES IN HIGHER-ORDER SEMILINEAR ELLIPTIC-EQUATIONS [J].
DALMASSO, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 24 (01) :1-7
[9]   Existence and uniqueness results for polyharmonic equations [J].
Dalmasso, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 36 (01) :131-137
[10]   UNIQUENESS THEOREMS FOR SOME 4TH-ORDER ELLIPTIC-EQUATIONS [J].
DALMASSO, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (04) :1177-1183