A sufficient condition for blowup solutions of nonlinear heat equations

被引:7
作者
Chen, SH [1 ]
机构
[1] Univ Coll Cape Breton, Dept Math, Sydney, NS B1P 6L2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
parabolic equation; Dirichlet problem; blowup solutions;
D O I
10.1016/j.jmaa.2003.12.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The author discusses the initial-boundary value problem (u(i))(1) = Deltau(i) + f(i) (u(1),..., u(m))with u(i)\partial derivativeOmega =0 and u(i)(x,0) =Phi(1)(x), i = 1,..., m, in a bounded domain Omega subset of R-11. Under suitable assumptions on fi, he proves that, if Phi(i) greater than or equal to, (1 + epsilon(0))Psi(i) in Di subset of Omega, for some small epsilon(0) > 0, then the solutions blow up in a finite time, where Psi(i) is a positive solution of DeltaPsi(i) + fi(Psi(I),..., Psi(m)) greater than or equal to 0, with Psi(i)\partial derivative(Di) = 0 for i = 1,..., m. If m = 1, the initial value can be negative in a subset of Omega. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:227 / 236
页数:10
相关论文
共 14 条
[1]  
Amann H., 1978, Nonlinear Analysis: A Collection of Papers in Honor of Erich H. Rothe, V42, P1, DOI DOI 10.1016/B978-0-12-165550-1.50007-0
[2]   FINITE-TIME BLOWUP FOR SEMILINEAR REACTIVE-DIFFUSIVE SYSTEMS [J].
BEBERNES, J ;
LACEY, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 95 (01) :105-129
[3]   FINITE-TIME BLOWUP FOR A PARTICULAR PARABOLIC-SYSTEM [J].
BEBERNES, J ;
LACEY, A .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (06) :1415-1425
[4]   Global existence and blow-up for a nonlinear reaction-diffusion system [J].
Chen, HW .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 212 (02) :481-492
[5]   Global existence and blow-up of solutions for a semilinear parabolic system [J].
Chen, SH ;
Derrick, WR .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1999, 29 (02) :449-457
[6]   Global existence and blowup of solutions for a parabolic equation with a gradient term [J].
Chen, SH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (04) :975-981
[7]   NONEXISTENCE OF GLOBAL-SOLUTIONS TO SYSTEMS OF SEMILINEAR PARABOLIC EQUATIONS [J].
GANG, L ;
SLEEMAN, BD .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 104 (01) :147-168
[8]  
Henry D., 1981, GEOMETRIC THEORY SEM, DOI [10.1007/BFb0089647, DOI 10.1007/BFB0089647]
[9]   A moving collocation method for solving time dependent partial differential equations [J].
Huang, WZ ;
Russell, RD .
APPLIED NUMERICAL MATHEMATICS, 1996, 20 (1-2) :101-116