Design of combinational logic circuits through an evolutionary multiobjective optimization approach

被引:42
作者
Coello, CAC
Aguirre, AH
机构
[1] CINVESTAV, IPN, Dept Ingn Elect, Secc Computac, Mexico City 07300, DF, Mexico
[2] Tulane Univ, Dept Comp Sci & Elect Engn, New Orleans, LA 70118 USA
来源
AI EDAM-ARTIFICIAL INTELLIGENCE FOR ENGINEERING DESIGN ANALYSIS AND MANUFACTURING | 2002年 / 16卷 / 01期
关键词
circuit design; evolvable hardware; evolutionary multiobjective optimization; genetic algorithms; multiobjective optimization;
D O I
10.1017/S0890060401020054
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a population-based evolutionary multiobjective optimization approach to design combinational circuits. Our results indicate that the proposed approach can significantly reduce the computational effort required by a genetic algorithm (GA) to design circuits at a gate level while generating equivalent or even better solutions (i.e., circuits with a lower number of gates) than a human designer or even other GAs. Several examples taken from the literature are used to evaluate the performance of the proposed approach.
引用
收藏
页码:39 / 53
页数:15
相关论文
共 47 条
  • [1] [Anonymous], 1989, GENETIC ALGORITHM SE
  • [2] [Anonymous], P WORKSH AISB S CREA
  • [3] [Anonymous], DESIGN OPTIMIZATION
  • [4] Brayton R.K., 1984, LOGIC MINIMIZATION A
  • [5] MIS - A MULTIPLE-LEVEL LOGIC OPTIMIZATION SYSTEM
    BRAYTON, RK
    RUDELL, R
    SANGIOVANNIVINCENTELLI, A
    WANG, AR
    [J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1987, 6 (06) : 1062 - 1081
  • [6] Brzozowski J. A., 1976, DIGITAL NETWORKS
  • [7] Camponogara E, 1997, PROCEEDINGS OF THE THIRD NORDIC WORKSHOP ON GENETIC ALGORITHMS AND THEIR APPLICATIONS (3NWGA), P49
  • [8] Chankong V., 1983, Multiobjective Decision Making: Theory and Methodology
  • [9] Coello C.A., 1997, P INT C ARTIFICIAL N
  • [10] Coello C. A. C., 1999, Knowledge and Information Systems, V1, P269