Spectral properties of the k-body embedded Gaussian ensembles of random matrices for bosons

被引:40
作者
Asaga, T
Benet, L
Rupp, T
Weidenmüller, HA
机构
[1] Nihon Univ, Coll Sci & Technol, Phys Lab, Funabashi, Chiba 2748501, Japan
[2] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany
基金
日本学术振兴会;
关键词
D O I
10.1006/aphy.2002.6253
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider m spinless Bosons distributed over I degenerate single-particle states and interacting through a k-body random interaction with Gaussian probability distribution (the Bosonic embedded k-body ensembles). We address the cases of orthogonal and unitary symmetry in the limit of infinite matrix dimension, attained either as l --> infinity, or as m --> infinity. We derive an eigenvalue expansion for the second moment of the many-body matrix elements of these ensembles. Using properties of this expansion, the supersymmetry technique, and the binary correlation method, we show that in the limit l --> infinity the ensembles have nearly the same spectral properties as the corresponding Fermionic embedded ensembles. Novel features specific for Bosons arise in the dense limit defined as m --> infinity with both k and l fixed. Here we show that the ensemble is not ergodic and that the spectral fluctuations are not of Wigner-Dyson type. We present numerical results for the dense limit using both ensemble unfolding and spectral unfolding. These differ strongly, demonstrating the lack of ergodicity of the ensemble. Spectral unfolding shows a strong tendency toward picket-fence-type spectra. Certain eigenfunctions of individual realizations of the ensemble display Fock-space localization. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:229 / 247
页数:19
相关论文
共 41 条
[1]   Random matrix model for quantum dots with interactions and the conductance peak spacing distribution [J].
Alhassid, Y ;
Jacquod, P ;
Wobst, A .
PHYSICAL REVIEW B, 2000, 61 (20) :13357-13360
[2]   Quasiparticle lifetime in a finite system: A nonperturbative approach [J].
Altshuler, BL ;
Gefen, Y ;
Kamenev, A ;
Levitov, LS .
PHYSICAL REVIEW LETTERS, 1997, 78 (14) :2803-2806
[3]   Non-ergodic behaviour of the k-body embedded Gaussian random ensembles for bosons [J].
Asaga, T ;
Benet, L ;
Rupp, T ;
Weidenmüller, HA .
EUROPHYSICS LETTERS, 2001, 56 (03) :340-346
[4]   Spectral properties of the k-body embedded Gaussian ensembles of random matrices [J].
Benet, L ;
Rupp, T ;
Weidenmüller, HA .
ANNALS OF PHYSICS, 2001, 292 (01) :67-94
[5]   Nonuniversal behavior of the k-body embedded Gaussian unitary ensemble of random matrices -: art. no. 010601 [J].
Benet, L ;
Rupp, T ;
Weidenmüller, HA .
PHYSICAL REVIEW LETTERS, 2001, 87 (01) :1-010601
[6]   Dominance of JP=0+ ground states in even-even nuclei from random two-body interactions -: art. no. 021302 [J].
Bijker, R ;
Frank, A ;
Pittel, S .
PHYSICAL REVIEW C, 1999, 60 (02) :4
[7]   Band structure from random interactions [J].
Bijker, R ;
Frank, A .
PHYSICAL REVIEW LETTERS, 2000, 84 (03) :420-422
[8]   SPACING AND INDIVIDUAL EIGENVALUE DISTRIBUTIONS OF 2-BODY RANDOM HAMILTONIANS [J].
BOHIGAS, O ;
FLORES, J .
PHYSICS LETTERS B, 1971, B 35 (05) :383-&
[9]   2-BODY RANDOM HAMILTONIAN AND LEVEL DENSITY [J].
BOHIGAS, O ;
FLORES, J .
PHYSICS LETTERS B, 1971, B 34 (04) :261-&
[10]   LEVEL DENSITY FLUCTUATIONS AND RANDOM MATRIX-THEORY [J].
BOHIGAS, O ;
GIANNONI, MJ .
ANNALS OF PHYSICS, 1975, 89 (02) :393-422