The J-flow on Toric Manifolds

被引:1
作者
Yao, Yi [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
J-flow; toric manifold; moment map; degenerate parabolic system; MABUCHI ENERGY; KAHLER-MANIFOLDS; CONVERGENCE; STABILITY; SURFACES;
D O I
10.1007/s10114-015-4416-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the long time behavior of J-flows on toric manifolds. By introducing the transition maps between moment maps, we get a quasilinear parabolic system for J-flows. Some basic estimates for transition maps are obtained.
引用
收藏
页码:1582 / 1592
页数:11
相关论文
共 15 条
[1]  
[Anonymous], 1993, ANN MATH STUD
[2]  
Chen B., ARXIV10082607
[3]  
Chen XX, 2000, INT MATH RES NOTICES, V2000, P607
[4]  
Chen XX, 2004, COMMUN ANAL GEOM, V12, P837
[5]  
Collins T., ARXIV14124809
[6]  
Donaldson S.K., 1999, Asian J. Math., V3, P1
[7]  
Donaldson SK, 2002, J DIFFER GEOM, V62, P289
[8]   THE J-FLOW ON KAHLER SURFACES: A BOUNDARY CASE [J].
Fang, Hao ;
Lai, Mijia ;
Song, Jian ;
Weinkove, Ben .
ANALYSIS & PDE, 2014, 7 (01) :215-226
[9]  
Fang H, 2013, T AM MATH SOC, V365, P6543
[10]   The J-flow and stability [J].
Lejmi, Mehdi ;
Szekelyhidi, Gabor .
ADVANCES IN MATHEMATICS, 2015, 274 :404-431