UNIFIED THERMAL SHOCK RESISTANCE OF ULTRA-HIGH TEMPERATURE CERAMICS UNDER DIFFERENT THERMAL ENVIRONMENTS

被引:32
作者
Cheng, Tianbao [1 ]
Li, Weiguo [1 ]
Zhang, Chuanzeng [2 ]
Fang, Daining [3 ]
机构
[1] Chongqing Univ, Dept Engn Mech, Coll Resources & Environm Sci, Chongqing 400030, Peoples R China
[2] Univ Siegen, Dept Civil Engn, D-57068 Siegen, Germany
[3] Peking Univ, Coll Engn, State Key Lab Turbulence & Complex Syst, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Critical heat transfer condition; Heat transfer condition; Thermal environments; Thermal shock resistance (TSR); Ultra-high temperature ceramics (UHTCs); HAFNIUM; COMPOSITES; PREDICTION; ZIRCONIUM;
D O I
10.1080/01495739.2013.818891
中图分类号
O414.1 [热力学];
学科分类号
摘要
The thermal shock resistance (TSR) of the ultra-high temperature ceramic (UHTC) plate under convective environments is studied. The critical failure temperature difference has a danger temperature range about the thermal shock initial temperature. However, the critical failure dimensionless time decreases as the thermal shock initial temperature increases. The TSR of UHTCs is susceptible to thermal environments. The heat transfer condition shows its advantage in representing the TSR of UHTCs under different thermal environments. Universal conclusions about the TSR of UHTCs under different thermal environments are drawn using heat transfer condition. Three types of critical heat transfer condition that respectively correspond to the first, second, and third type thermal boundary conditions are introduced to characterize the TSR of UHTCs under different thermal environments similar to using various types of strength in representing the fracture-resistance abilities of the materials under different loads. The critical heat transfer condition is applied to the TSR of the UHTC plate under active cooling. The critical heat transfer condition is susceptible to the difference of the thermal shock initial temperature and the coolant temperature.
引用
收藏
页码:14 / 33
页数:20
相关论文
共 36 条
[1]  
[Anonymous], 2009, HEAT TRANSF THERM ST
[2]  
[Anonymous], 2007, Introduction to Heat Transfer
[3]  
[Anonymous], 1998, An Introduction to Mechanical Properties of Ceramics, DOI DOI 10.1017/CBO9780511623103
[4]  
Blosser M. L., 2000, THESIS U VIRGINIA AN
[5]   RESISTANCE TO THERMAL SHOCK [J].
CHENG, CM .
JOURNAL OF THE AMERICAN ROCKET SOCIETY, 1951, 21 (06) :147-153
[6]   Thermal Shock Resistance of Ultra-High-Temperature Ceramics Under Aerodynamic Thermal Environments [J].
Cheng, Tianbao ;
Li, Weiguo ;
Fang, Daining .
AIAA JOURNAL, 2013, 51 (04) :840-848
[7]   Analysis and prediction of thermal shock in brittle materials [J].
Collin, M ;
Rowcliffe, D .
ACTA MATERIALIA, 2000, 48 (08) :1655-1665
[8]  
David Kingery W., 1976, INTRO CERAMICS, V17
[9]   Refractory diborides of zirconium and hafnium [J].
Fahrenholtz, William G. ;
Hilmas, Gregory E. ;
Talmy, Inna G. ;
Zaykoski, James A. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2007, 90 (05) :1347-1364
[10]   Thermal conductivity characterization of hafnium diboride-based ultra-high-temperature ceramics [J].
Gasch, Matthew ;
Johnson, Sylvia ;
Marschall, Jochen .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2008, 91 (05) :1423-1432