Statistics of superior records

被引:11
作者
Ben-Naim, E. [1 ,2 ]
Krapivsky, P. L. [3 ]
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[3] Boston Univ, Dept Phys, Boston, MA 02215 USA
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 02期
关键词
EARTHQUAKES;
D O I
10.1103/PhysRevE.88.022145
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study statistics of records in a sequence of random variables. These identical and independently distributed variables are drawn from the parent distribution rho. The running record equals the maximum of all elements in the sequence up to a given point. We define a superior sequence as one where all running records are above the average record expected for the parent distribution rho. We find that the fraction of superior sequences S-N decays algebraically with sequence length N, S-N similar to N-beta in the limit N -> infinity. Interestingly, the decay exponent beta is nontrivial, being the root of an integral equation. For example, when rho is a uniform distribution with compact support, we find beta = 0.450 265. In general, the tail of the parent distribution governs the exponent beta. We also consider the dual problem of inferior sequences, where all records are below average, and find that the fraction of inferior sequences I-N decays algebraically, albeit with a different decay exponent, I-N similar to N-alpha. We use the above statistical measures to analyze earthquake data.
引用
收藏
页数:7
相关论文
共 33 条
[1]  
[Anonymous], 1968, An introduction to probability theory and its applications
[2]  
[Anonymous], 2010, A Kinetic View of Statistical Physics
[3]  
[Anonymous], 2005, Entropy, Large Deviations, and Statistical Mechanics
[4]   Recurrence statistics of great earthquakes [J].
Ben-Naim, E. ;
Daub, E. G. ;
Johnson, P. A. .
GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (12) :3021-3025
[5]   KINETICS OF CLUSTERING IN TRAFFIC FLOWS [J].
BENNAIM, E ;
KRAPIVSKY, PL ;
REDNER, S .
PHYSICAL REVIEW E, 1994, 50 (02) :822-829
[6]  
Bouchaud J.-P., 2003, Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management
[7]   Persistence and first-passage properties in nonequilibrium systems [J].
Bray, Alan J. ;
Majumdar, Satya N. ;
Schehr, Gregory .
ADVANCES IN PHYSICS, 2013, 62 (03) :225-361
[8]   Evidence for a global seismic-moment release sequence [J].
Bufe, CG ;
Perkins, DM .
BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2005, 95 (03) :833-843
[9]  
Castillo Enrique., 1988, EXTREME VALUE THEORY
[10]   Are megaquakes clustered? [J].
Daub, Eric G. ;
Ben-Naim, Eli ;
Guyer, Robert A. ;
Johnson, Paul A. .
GEOPHYSICAL RESEARCH LETTERS, 2012, 39