EEG Classification for Multiclass Motor Imagery BCI

被引:0
|
作者
Liu, Chong [1 ]
Wang, Hong [1 ]
Lu, Zhiguo [1 ]
机构
[1] Northeastern Univ, Sch Mech Engn & Automat, Shenyang 110819, Peoples R China
来源
2013 25TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC) | 2013年
关键词
Brain-computer interfaces; multiclass motor imagery; common spatial pattern; support vector machine; k-nearest neighbor; BRAIN-COMPUTER INTERFACES; SINGLE-TRIAL EEG; SPATIAL FILTERS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes the method for classifying multiclass motor imagery EEG signals of brain-computer interfaces (BCIs) according to the phenomena of event-related desynchronization and synchronization (ERD/ERS). The method of one-versus-one common spatial pattern (CSP) for multiclass feature extraction was employed. And we extended two different kinds of classifiers: 1) support vector machines (SVM) based on maximal average decision value; 2) k-nearest neighbor (KNN) rule for multiclass classification. In order to testify the performance of each classifier, dataset IIa of BCI Competition IV (2008) which involved nine subjects in a four-class motor imagery (MI) based BCI experiment were used. And the final classification results showed that our extended SVM classification method based on decision value is much better than the majority voting rule, and the extended KNN performed the best.
引用
收藏
页码:4450 / 4453
页数:4
相关论文
共 50 条
  • [31] Detection of Motor Imagery Movements in EEG-based BCI
    Bagh, Niraj
    Reddy, T. Janardhan
    Reddy, M. Ramasubba
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2020, 36 (05) : 1079 - 1091
  • [32] Common Spatial Pattern and Riemannian Manifold-Based Real-Time Multiclass Motor Imagery EEG Classification
    Shyu, Kuo-Kai
    Huang, Szu-Chi
    Tung, Kai-Jen
    Lee, Lung-Hao
    Lee, Po-Lei
    Chen, Yu-Hao
    IEEE ACCESS, 2023, 11 : 139457 - 139465
  • [33] Temperament Predictors of Motor Imagery Control in BCI
    Zapala, Dariusz
    Malkiewicz, Monika
    Francuz, Piotr
    Kolodziej, Marcin
    Majkowski, Andrzej
    JOURNAL OF PSYCHOPHYSIOLOGY, 2020, 34 (04) : 246 - 254
  • [34] An automatic subject specific channel selection method for enhancing motor imagery classification in EEG-BCI using correlation
    Gaur, Pramod
    McCreadie, Karl
    Pachori, Ram Bilas
    Wang, Hui
    Prasad, Girijesh
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 68
  • [35] A composite improved attention convolutional network for motor imagery EEG classification
    Liao, Wenzhe
    Miao, Zipeng
    Liang, Shuaibo
    Zhang, Linyan
    Li, Chen
    FRONTIERS IN NEUROSCIENCE, 2025, 19
  • [36] Motor Imagery BCI Classification Using Synchrosqueezing Transform
    Yousif, Mosab A. A.
    Ozturk, Mahmut
    2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2023,
  • [37] A New Way of Channel Selection in the Motor Imagery Classification for BCI Applications
    Joadder, Md. A. Mannan
    Siuly, Siuly
    Kabir, Enamul
    HEALTH INFORMATION SCIENCE (HIS 2018), 2018, 11148 : 110 - 119
  • [38] Classification of Motor Imagery BCI Using Multiband Tangent Space Mapping
    Islam, Md Rabiul
    Tanaka, Toshihisa
    Akter, Most Sheuli
    Molla, Md Khademul Islam
    2017 22ND INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2017,
  • [39] Classification of motor imagery EEG with ensemble RNCA model
    Thenmozhi, T.
    Helen, R.
    Mythili, S.
    BEHAVIOURAL BRAIN RESEARCH, 2025, 479
  • [40] Simultaneous classification of motor imagery and SSVEP EEG signals
    Dehzangi, Omid
    Zou, Yuan
    Jafari, Roozbeh
    2013 6TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2013, : 1303 - 1306