Robust performance of deep learning for distinguishing glioblastoma from single brain metastasis using radiomic features: model development and validation

被引:77
作者
Bae, Sohi [1 ]
An, Chansik [1 ,2 ]
Ahn, Sung Soo [1 ,3 ,4 ]
Kim, Hwiyoung [1 ,3 ,4 ]
Han, Kyunghwa [3 ,4 ]
Kim, Sang Wook [5 ]
Park, Ji Eun [6 ,7 ]
Kim, Ho Sung [6 ,7 ]
Lee, Seung-Koo [3 ,4 ]
机构
[1] Natl Hlth Insurance Serv Ilsan Hosp, Dept Radiol, Goyang 10444, South Korea
[2] Natl Hlth Insurance Serv Ilsan Hosp, Res & Anal Team, Goyang 10444, South Korea
[3] Yonsei Univ, Res Inst Radiol Sci, Coll Med, Dept Radiol,Severance Hosp, 50-1 Yonsei Ro, Seoul 03722, South Korea
[4] Yonsei Univ, Ctr Clin Image Data Sci, Coll Med, 50-1 Yonsei Ro, Seoul 03722, South Korea
[5] Korea Univ, Sch Biomed Engn, Coll Hlth Sci, Seoul 02841, South Korea
[6] Univ Ulsan, Dept Radiol, Coll Med, Asan Med Ctr, Seoul 05505, South Korea
[7] Univ Ulsan, Res Inst Radiol, Coll Med, Asan Med Ctr, Seoul 05505, South Korea
基金
新加坡国家研究基金会;
关键词
MAGNETIC-RESONANCE SPECTROSCOPY; EUROPEAN ASSOCIATION; IMAGING PREDICTOR; MULTIFORME; DIFFUSION; PERFUSION; DIFFERENTIATION; DIAGNOSIS; SURVIVAL; GLIOMA;
D O I
10.1038/s41598-020-68980-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We evaluated the diagnostic performance and generalizability of traditional machine learning and deep learning models for distinguishing glioblastoma from single brain metastasis using radiomics. The training and external validation cohorts comprised 166 (109 glioblastomas and 57 metastases) and 82 (50 glioblastomas and 32 metastases) patients, respectively. Two-hundred-and-sixty-five radiomic features were extracted from semiautomatically segmented regions on contrast-enhancing and peritumoral T2 hyperintense masks and used as input data. For each of a deep neural network (DNN) and seven traditional machine learning classifiers combined with one of five feature selection methods, hyperparameters were optimized through tenfold cross-validation in the training cohort. The diagnostic performance of the optimized models and two neuroradiologists was tested in the validation cohort for distinguishing glioblastoma from metastasis. In the external validation, DNN showed the highest diagnostic performance, with an area under receiver operating characteristic curve (AUC), sensitivity, specificity, and accuracy of 0.956 (95% confidence interval [CI], 0.918-0.990), 90.6% (95% CI, 80.5-100), 88.0% (95% CI, 79.0-97.0), and 89.0% (95% CI, 82.3-95.8), respectively, compared to the best-performing traditional machine learning model (adaptive boosting combined with tree-based feature selection; AUC, 0.890 (95% CI, 0.823-0.947)) and human readers (AUC, 0.774 [95% CI, 0.685-0.852] and 0.904 [95% CI, 0.852-0.951]). The results demonstrated deep learning using radiomic features can be useful for distinguishing glioblastoma from metastasis with good generalizability.
引用
收藏
页数:10
相关论文
共 46 条
[1]  
[Anonymous], 2019, SCI REP, DOI DOI 10.1038/S41598-019-42276-W6451024
[2]  
[Anonymous], 2007, ACTA NEUROPATHOL, DOI DOI 10.1007/s00401-007-0243-4
[3]   Differentiation between glioblastoma, brain metastasis and subtypes using radiomics analysis [J].
Artzi, Moran ;
Bressler, Idan ;
Ben Bashat, Dafna .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2019, 50 (02) :519-528
[4]   Radiomic MRI Phenotyping of Glioblastoma: Improving Survival Preciction [J].
Bae, Sohi ;
Choi, Yoon Seong ;
Ahn, Sung Soo ;
Chang, Jong Hee ;
Kang, Seok-Gu ;
Kim, Eui Hyun ;
Kim, Se Hoon ;
Lee, Seung-Koo .
RADIOLOGY, 2018, 289 (03) :797-806
[5]   COMPLICATIONS OF CT-GUIDED STEREOTAXIC BIOPSY OF INTRAAXIAL BRAIN-LESIONS [J].
BERNSTEIN, M ;
PARRENT, AG .
JOURNAL OF NEUROSURGERY, 1994, 81 (02) :165-168
[6]   Discrimination between Metastasis and Glioblastoma Multiforme Based on Morphometric Analysis of MR Images [J].
Blanchet, L. ;
Krooshof, P. W. T. ;
Postma, G. J. ;
Idema, A. J. ;
Goraj, B. ;
Heerschap, A. ;
Buydens, L. M. C. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2011, 32 (01) :67-73
[7]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[8]  
Bulakbasi N, 2005, AM J NEURORADIOL, V26, P2187
[9]   Incidence and prognosis of patients with brain metastases at diagnosis of systemic malignancy: a population-based study [J].
Cagney, Daniel N. ;
Martin, Allison M. ;
Catalano, Paul J. ;
Redig, Amanda J. ;
Lin, Nancy U. ;
Lee, Eudocia Q. ;
Wen, Patrick Y. ;
Dunn, Ian F. ;
Bi, Wenya Linda ;
Weiss, Stephanie E. ;
Haas-Kogan, Daphne A. ;
Alexander, Brian M. ;
Aizer, Ayal A. .
NEURO-ONCOLOGY, 2017, 19 (11) :1511-1521
[10]   Perfusion and diffusion MR imaging in enhancing malignant cerebral tumors [J].
Calli, Cem ;
Kitis, Omer ;
Yunten, Nigun ;
Yurtseven, Taskin ;
Islekel, Sertac ;
Akalin, Taner .
EUROPEAN JOURNAL OF RADIOLOGY, 2006, 58 (03) :394-403