A Method for Determining Optimal Decomposition Scale in Wavelet Threshold De-noising

被引:0
作者
Tang, Huai-yu [1 ]
Liu, Zhi-guo [1 ]
Li, Xu [1 ]
机构
[1] China Res Inst Radio Propagat, Qingdao 266107, Shandong, Peoples R China
来源
2012 10TH INTERNATIONAL SYMPOSIUM ON ANTENNAS, PROPAGATION & EM THEORY (ISAPE) | 2012年
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
While taking wavelet transforms to signal de-noising in signal processing field, determining signal decomposition scale is the key factor for wavelet threshold de-noising. By using the Mallat algorithm to dyadic wavelet decomposition, the sequence length decays with 2 powers to the increase of decomposition. Therefore a method to determine the optimal decomposition scale based on small sample of white noise verification is proposed in this paper. Finally, simulation results indicate that the above method is effective.
引用
收藏
页码:1275 / 1278
页数:4
相关论文
共 12 条
[1]  
Bruce A., 1996, SPIE, V2569, p270~281
[2]   Adaptive wavelet thresholding for image denoising and compression [J].
Chang, SG ;
Yu, B ;
Vetterli, M .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (09) :1532-1546
[3]   DE-NOISING BY SOFT-THRESHOLDING [J].
DONOHO, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (03) :613-627
[4]   IDEAL SPATIAL ADAPTATION BY WAVELET SHRINKAGE [J].
DONOHO, DL ;
JOHNSTONE, IM .
BIOMETRIKA, 1994, 81 (03) :425-455
[5]  
FENG Xiang-chu, 2003, NUMERICAL FUNCTIONAL, V3, P105
[6]  
Liu Heng-bing, 2007, Computer Engineering and Applications, V43, P72
[7]   CHARACTERIZATION OF SIGNALS FROM MULTISCALE EDGES [J].
MALLAT, S ;
ZHONG, S .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1992, 14 (07) :710-732
[8]   Optimal signal estimation using cross-validation [J].
Nowak, RD .
IEEE SIGNAL PROCESSING LETTERS, 1997, 4 (01) :23-25
[9]  
[潘泉 Pan Quan], 2007, [电子与信息学报, Journal of electronics & information technology], V29, P236
[10]  
Qu Tian-shu, 2002, Acta Electronica Sinica, V30, P266