Competitive effect of KOH activation on the electrochemical performances of carbon nanotubes for EDLC: Balance between porosity and conductivity

被引:135
作者
Xu, Bin [1 ,2 ]
Wu, Feng [2 ]
Su, Yuefeng [2 ]
Cao, Gaoping [1 ]
Chen, Shi [2 ]
Zhou, Zhiming [2 ]
Yang, Yusheng [1 ]
机构
[1] Res Inst Chem Def, Beijing 100083, Peoples R China
[2] Beijing Inst Technol, Sch Chem Engn & Environm, Beijing 100081, Peoples R China
基金
美国国家科学基金会;
关键词
electric double layer capacitor; carbon nanotubes; activation; specific surface area; capacitance;
D O I
10.1016/j.electacta.2008.05.033
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This work is focused on the competitive effects on the performance of the electric double layer capacitors (EDLCs) between porosity increase and simultaneous conductivity decrease for KOH-activated carbon nanotubes (CNTs). A series of the CNTs have been activated with KOH to enhance their surface areas for application in EDLCs. The microstructure of the activated carbon nanotubes (ACNTs) is characterized with N-2 adsorption, transmission electron microscopy (TEM) observation and electric conductivity measurement. Their electrochemical performances are evaluated in aqueous KOH electrolyte with galvanostatic charge/discharge, cyclic voltammetry, and ac impedance spectroscopy. It is found that the KOH activation enhances the specific surface area of the CNTs and its specific capacitance but decreases its electric conductivity and the rate performance in EDLC. By controlling the activation of the CNTs to balance the porosity and conductivity, ACNTs with both high capacitance and good rate performance are obtained. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:7730 / 7735
页数:6
相关论文
共 29 条
[1]  
An KH, 2001, ADV MATER, V13, P497, DOI 10.1002/1521-4095(200104)13:7<497::AID-ADMA497>3.0.CO
[2]  
2-H
[3]   Capacitance limits of high surface area activated carbons for double layer capacitors [J].
Barbieri, O ;
Hahn, M ;
Herzog, A ;
Kötz, R .
CARBON, 2005, 43 (06) :1303-1310
[4]   Role of surface chemistry on electric double layer capacitance of carbon materials [J].
Bleda-Martínez, MJ ;
Maciá-Agulló, JA ;
Lozano-Castelló, D ;
Morallón, E ;
Cazorla-Amorós, D ;
Linares-Solano, A .
CARBON, 2005, 43 (13) :2677-2684
[5]   Capacitance and pore-size distribution in aqueous and nonaqueous electrolytes using various activated carbon electrodes [J].
Endo, M ;
Maeda, T ;
Takeda, T ;
Kim, YJ ;
Koshiba, K ;
Hara, H ;
Dresselhaus, MS .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (08) :A910-A914
[6]   Carbon materials for the electrochemical storage of energy in capacitors [J].
Frackowiak, E ;
Béguin, F .
CARBON, 2001, 39 (06) :937-950
[7]   Enhanced capacitance of carbon nanotubes through chemical activation [J].
Frackowiak, E ;
Delpeux, S ;
Jurewicz, K ;
Szostak, K ;
Cazorla-Amoros, D ;
Béguin, F .
CHEMICAL PHYSICS LETTERS, 2002, 361 (1-2) :35-41
[8]   Supercapacitor electrodes from multiwalled carbon nanotubes [J].
Frackowiak, E ;
Metenier, K ;
Bertagna, V ;
Beguin, F .
APPLIED PHYSICS LETTERS, 2000, 77 (15) :2421-2423
[9]   Effect of pore size distribution of coal-based activated carbons on double layer capacitance [J].
Gryglewicz, G ;
Machnikowski, J ;
Lorenc-Grabowska, E ;
Lota, G ;
Frackowiak, E .
ELECTROCHIMICA ACTA, 2005, 50 (05) :1197-1206
[10]   Characterization of pistachio shell-derived carbons activated by a combination of KOH and CO2 for electric double-layer capacitors [J].
Hu, Chi-Chang ;
Wang, Chen-Ching ;
Wu, Feng-Chin ;
Tseng, Ru-Ling .
ELECTROCHIMICA ACTA, 2007, 52 (07) :2498-2505