The Nonexistence of Vortices for Rotating Bose-Einstein Condensates with Attractive Interactions

被引:28
作者
Guo, Yujin [1 ,2 ]
Luo, Yong [3 ,4 ]
Yang, Wen [4 ,5 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[2] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100190, Peoples R China
[4] Chinese Acad Sci, Wuhan Inst Phys & Math, POB 71010, Wuhan 430071, Peoples R China
[5] Chinese Acad Sci, Innovat Acad Precis Measurement Sci & Technol, Wuhan 430071, Peoples R China
基金
中国博士后科学基金;
关键词
NONLINEAR SCHRODINGER-EQUATIONS; LEAST-ENERGY SOLUTIONS; STANDING WAVES; GROUND-STATES; BOUND-STATES; VORTEX; UNIQUENESS; STABILITY; EXISTENCE; OPERATORS;
D O I
10.1007/s00205-020-01564-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is devoted to studying the model of two-dimensional attractive Bose-Einstein condensates in a trap V(x) rotating at the velocity Omega. This model can be described by the complex-valued Gross-Pitaevskii energy functional. It is shown that there exists a critical rotational velocity 0<Omega*:=Omega*(V)<=infinity, depending on the general trap V(x), such that for any rotational velocity 0 <=Omega<Omega*, minimizers (i.e., ground states) exist if and only if a<a* =parallel to w parallel to|(2)(2) a, where a>0 denotes the absolute product for the number of particles times the scattering length, and w>0 is the unique positive solution of Delta w-w+w(3)=0 in R-2. If V(x)=vertical bar x vertical bar(2) and 0<omega<omega*(=2) is fixed, we prove that, up to a constant phase, all minimizers must be real-valued, unique and free of vortices as a, NE arrow a* by analyzing the refined limit behavior of minimizers and employing the non-degenerancy of w.
引用
收藏
页码:1231 / 1281
页数:51
相关论文
共 65 条
[1]   Observation of vortex lattices in Bose-Einstein condensates [J].
Abo-Shaeer, JR ;
Raman, C ;
Vogels, JM ;
Ketterle, W .
SCIENCE, 2001, 292 (5516) :476-479
[2]   Giant vortex and the breakdown of strong pinning in a rotating Bose-Einstein condensate [J].
Aftalion, A ;
Alama, S ;
Bronsard, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2005, 178 (02) :247-286
[3]  
Aftalion A., 2006, PROGR NONLINEAR DIFF, V67
[4]   Non-existence of vortices in the small density region of a condensate [J].
Aftalion, Amandine ;
Jerrard, Robert L. ;
Royo-Letelier, Jimena .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (08) :2387-2406
[5]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[6]  
[Anonymous], 1978, ANAL OPERATORS
[7]  
[Anonymous], 1981, ADV MATH SUPPL STUD
[8]   Stability and instability properties of rotating Bose-Einstein condensates [J].
Arbunich, Jack ;
Nenciu, Irina ;
Sparber, Christof .
LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (06) :1415-1432
[9]   A semilinear Schrodinger equation in the presence of a magnetic field [J].
Arioli, G ;
Szulkin, A .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 170 (04) :277-295
[10]   Ground States of Two-component Bose-Einstein Condensates with an Internal Atomic Josephson Junction [J].
Bao, Weizhu ;
Cai, Yongyong .
EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2011, 1 (01) :49-81