Secondary derived functors and the Adams spectral sequence

被引:14
作者
Baues, HJ
Jibladze, M
机构
[1] Max Planck Inst Math, D-53111 Bonn, Germany
[2] Razmadze Math Inst, GE-0193 Tbilisi, Georgia
关键词
Adams spectral sequence; track category; secondary derived functors;
D O I
10.1016/j.top.2005.08.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Classical homological algebra takes place in additive categories. In homotopy theory such additive categories arise as homotopy categories of "additive groupoid enriched categories", in which a secondary analog of homological algebra can be performed. We introduce secondary chain complexes and secondary resolutions leading to the concept of secondary derived functors. As a main result we show that the E-3-term of the Adams spectral sequence can be expressed as a secondary derived functor. This result can be used to compute the E-3-term explicitly by an algorithm. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:295 / 324
页数:30
相关论文
共 31 条
[1]   ON THE NON-EXISTENCE OF ELEMENTS OF HOPF INVARIANT ONE [J].
ADAMS, JF .
ANNALS OF MATHEMATICS, 1960, 72 (01) :20-109
[2]  
Baues H. J., 1989, Algebraic Homotopy, V15
[3]  
Baues H.J., 1991, GRUYTER EXPOSITIONS, V2
[4]  
Baues H.-J., 1989, K-THEORY, V3, P307, DOI [10/cz89mb, DOI 10.1007/BF00584524]
[5]  
Baues H-J, 2001, GEORGIAN MATH J, V8, P697
[6]   The Steenrod algebra and theories associated to Hopf algebras [J].
Baues, HJ ;
Jibladze, M .
APPLIED CATEGORICAL STRUCTURES, 2004, 12 (01) :109-126
[7]   Classification of Abelian track categories [J].
Baues, HJ ;
Jibladze, M .
K-THEORY, 2002, 25 (03) :299-311
[8]   Track extensions of categories and cohomology [J].
Baues, HJ ;
Minian, EG .
K-THEORY, 2001, 23 (01) :1-13
[9]  
BAUES HJ, 1996, OXFORD MATH MONOGRAP
[10]  
BAUES HJ, 2006, PROGR MATH, V247