All α plus μβ-constacyclic codes of length nps over Fpm + uFpm

被引:12
作者
Zhao, Wei [1 ]
Tang, Xilin [1 ]
Gu, Ze [2 ]
机构
[1] South China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R China
[2] Zhaoqing Univ, Sch Math & Stat, Zhaoqing 526061, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Constacyclic code; Dual code; Self dual code; Repeated-root code; SELF-DUAL CODES; NEGACYCLIC CODES; CYCLIC CODES; Z(4); 2P(S); RINGS; 2(S);
D O I
10.1016/j.ffa.2017.10.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F-p(m) be a finite field with cardinality p(m) and R = F-p(m) + uF(p)(m) with u(2) = 0. We aim to determine all alpha+mu beta-constacyclic codes of length np(s) over R, where alpha, beta is an element of F*(m)(p), n, s is an element of N+ and gcd(n, p) = 1. Let alpha(0) is an element of F*(m)(p) and alpha(ps)(0) = alpha. The residue ring R[x]/< x(nps)- alpha- mu beta > is a chain ring with the maximal ideal (x(n) - alpha(0)) in the case that x(n) - alpha(0) is irreducible in F-p(m) [x]. If x(n) - alpha(0) is reducible in F-p(m) [x], we give the explicit expressions of the ideals of R[x]/< x(nPs) - alpha - mu beta >. Besides, the number of codewords and the dual code of every alpha + mu beta-constacyclic code are provided. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 31 条
[1]   On the generators of Z4 cyclic codes of length 2e [J].
Abualrub, T ;
Oehmke, R .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (09) :2126-2133
[2]   Constacyclic codes over F2 + uF2 [J].
Abualrub, Taher ;
Siap, Irfan .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2009, 346 (05) :520-529
[3]  
Al-Ashker MM, 2005, ARAB J SCI ENG, V30, P277
[4]  
Berman S. D., 1967, Cybernetics, V3, P17, DOI 10.1007/BF01119999
[5]   Cyclic codes over Z4 of oddly even length [J].
Blackford, T .
DISCRETE APPLIED MATHEMATICS, 2003, 128 (01) :27-46
[6]  
Cao Y., 2015, ARXIV151201406V1
[7]   On constacyclic codes over finite chain rings [J].
Cao, Yonglin .
FINITE FIELDS AND THEIR APPLICATIONS, 2013, 24 :124-135
[8]  
Cary Huffman., 2003, Fundamentals of Error-Correcting Codes
[9]   ON REPEATED-ROOT CYCLIC CODES [J].
CASTAGNOLI, G ;
MASSEY, JL ;
SCHOELLER, PA ;
VONSEEMANN, N .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (02) :337-342
[10]   Constacyclic codes of length 2ps over Fpm + uFpm [J].
Chen, Bocong ;
Dinh, Hai Q. ;
Liu, Hongwei ;
Wang, Liqi .
FINITE FIELDS AND THEIR APPLICATIONS, 2016, 37 :108-130