Tailoring properties of lossy-mode resonance optical fiber sensors with atomic layer deposition technique

被引:33
作者
Kosiel, Kamil [1 ]
Koba, Marcin [2 ,3 ]
Masiewicz, Marcin [2 ]
Smietana, Mateusz [2 ]
机构
[1] Inst Electr Mat Technol, Al Lotnikow 32-46, PL-02668 Warsaw, Poland
[2] Inst Microelect & Optoelect, Koszykowa 75, PL-00662 Warsaw, Poland
[3] Natl Inst Telecommun, Szachowa 1, PL-04894 Warsaw, Poland
关键词
Optical fiber sensors; Lossy-mode resonance; Thin films; Atomic layer deposition; Optical properties; REFRACTIVE-INDEX SENSITIVITY; LONG-PERIOD GRATINGS; SILICON-NITRIDE; THIN-FILMS; METAL; ALD; NANOFILM; DEVICE;
D O I
10.1016/j.optlastec.2018.01.002
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The paper shows application of atomic layer deposition (ALD) technique as a tool for tailoring sensorial properties of lossy-mode-resonance (LMR)-based optical fiber sensors. Hafnium dioxide (HfO2), zirconium dioxide (ZrO2), and tantalum oxide (TaxOy), as high-refractive-index dielectrics that are particularly convenient for LMR-sensor fabrication, were deposited by low-temperature (100 degrees C) ALD ensuring safe conditions for thermally vulnerable fibers. Applicability of HfO2 and ZrO2 overlays, deposited with ALD-related atomic level thickness accuracy for fabrication of LMR-sensors with controlled sensorial properties was presented. Additionally, for the first time according to our best knowledge, the double layer overlay composed of two different materials -silicon nitride (SixNy) and TaxOy-is presented for the LMR fiber sensors. The thin films of such overlay were deposited by two different techniques PECVD (the SixNy) and ALD (the TaxOy). Such approach ensures fast overlay fabrication and at the same time facility for resonant wavelength tuning, yielding devices with satisfactory sensorial properties. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:213 / 221
页数:9
相关论文
共 63 条
[31]   Theoretical modeling of lossy mode resonance based refractive index sensors with ITO/TiO2 bilayers [J].
Paliwal, Nidhi ;
John, Joseph .
APPLIED OPTICS, 2014, 53 (15) :3241-3246
[32]   Pressure measurement with fiber-optic sensors: Commercial technologies and applications [J].
Pinet, Eric .
21ST INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS, 2011, 7753
[33]   Optical Fibre Pressure Sensors in Medical Applications [J].
Poeggel, Sven ;
Tosi, Daniele ;
Duraibabu, DineshBabu ;
Leen, Gabriel ;
McGrath, Deirdre ;
Lewis, Elfed .
SENSORS, 2015, 15 (07) :17115-17148
[34]   Low Temperature Plasma-Enhanced Atomic Layer Deposition of Metal Oxide Thin Films [J].
Potts, S. E. ;
Keuning, W. ;
Langereis, E. ;
Dingemans, G. ;
van de Sanden, M. C. M. ;
Kessels, W. M. M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (07) :P66-P74
[35]   Fabrication and optical measurements of a TiO2-ALD evanescent waveguide sensor [J].
Purniawan, A. ;
Pandraud, G. ;
Moh, T. S. Y. ;
Marthen, A. ;
Vakalopoulos, K. A. ;
French, P. J. ;
Sarro, P. M. .
SENSORS AND ACTUATORS A-PHYSICAL, 2012, 188 :127-132
[36]   Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process [J].
Puurunen, RL .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (12)
[37]   Current and Future Applications of ALD in Micro-electronics [J].
Raaijmakers, Ivo J. .
ATOMIC LAYER DEPOSITION APPLICATIONS 7, 2011, 41 (02) :3-17
[38]   Overview of Fiber Optic Sensor Technologies for Strain/Temperature Sensing Applications in Composite Materials [J].
Ramakrishnan, Manjusha ;
Rajan, Ginu ;
Semenova, Yuliya ;
Farrell, Gerald .
SENSORS, 2016, 16 (01)
[39]   Toward Optical Sensors: Review and Applications [J].
Sabri, Naseer ;
Aljunid, S. A. ;
Salim, M. S. ;
Ahmad, R. B. ;
Kamaruddin, R. .
2013 INTERNATIONAL CONFERENCE ON SCIENCE & ENGINEERING IN MATHEMATICS, CHEMISTRY AND PHYSICS (SCIETECH 2013), 2013, 423
[40]  
Sanchez P., 2014, IEEE Sensors 2014. Proceedings, P1142, DOI 10.1109/ICSENS.2014.6985209