Computer Simulation of the Effects of Nanoparticles' Adsorption on the Properties of Supported Lipid Bilayer

被引:29
|
作者
Lin, Xubo
Wang, Changling
Wang, Meng
Fang, Kun
Gu, Ning [1 ]
机构
[1] Southeast Univ, State Key Lab Bioelect, Nanjing 210096, Jiangsu, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2012年 / 116卷 / 33期
基金
中国国家自然科学基金;
关键词
COARSE-GRAINED MODEL; MOLECULAR-DYNAMICS; GOLD NANOPARTICLES; LATERAL DIFFUSION; MEMBRANES; SURFACE; WATER; MONOLAYERS; THERMODYNAMICS; TRANSLOCATION;
D O I
10.1021/jp305784z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Supported lipid bilayer (SLB) represents a kind of well-established model cell membrane and is also used for many biosensors or biodevices. Here, for the first time, we use molecular dynamics simulation to study the effects of nanoparticle (NP) adsorption on SLB. In our simulations, the surface charge properties and the heating effects of NPs are investigated. Results show that NPs adsorption behavior, SLB's diffusion ability, and local order parameter distribution are largely dominated by the property of the NPs' surface charge. Meanwhile the NPs' heating can increase the nearby lipids' and water's thermal motions, thus disrupting the surface charge's domination on the aforementioned properties. Besides, we find that the solid support may induce more intense thermal motions but poorer diffusion ability for the lipid leaflet closer to the support. This study provides useful insights on the NPs' disruption to the functioning of the biological membrane and the performance of SLB-based biosensors or biodevices.
引用
收藏
页码:17960 / 17968
页数:9
相关论文
共 50 条
  • [31] Computer simulation of small molecule permeation across a lipid bilayer: Dependence on bilayer properties and solute volume, size, and cross-sectional area
    Bemporad, D
    Luttmann, C
    Essex, JW
    BIOPHYSICAL JOURNAL, 2004, 87 (01) : 1 - 13
  • [32] Melting of a DPPC lipid bilayer observed with atomic force microscopy and computer simulation
    Yarrow, F.
    Vlugt, T. J. H.
    van der Eerden, J. P. J. M.
    Snel, M. M. E.
    JOURNAL OF CRYSTAL GROWTH, 2005, 275 (1-2) : E1417 - E1421
  • [33] A COMPUTER-SIMULATION STUDY OF PROBE MOLECULE BEHAVIOR IN LIPID BILAYER SYSTEMS
    VANDERHEIDE, UA
    LEVINE, YK
    MOLECULAR PHYSICS, 1994, 83 (06) : 1251 - 1264
  • [34] Influence of natural organic matter on the interaction of functionalized diamond nanoparticles with supported lipid bilayer
    Mensch, Arielle
    Torelli, Marco
    Pedersen, Joel
    Hamers, Robert
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [35] Computer simulation of chiral adsorption effects.
    Willock, DJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 225 : U692 - U693
  • [36] Stabilization of Soft Lipid Colloids: Competing Effects of Nanoparticle Decoration and Supported Lipid Bilayer Formation
    Savarala, Sushma
    Ahmed, Selver
    Ilies, Marc A.
    Wunder, Stephanie L.
    ACS NANO, 2011, 5 (04) : 2619 - 2628
  • [37] ALAMETHICIN ADSORPTION TO A PLANAR LIPID BILAYER
    VODYANOY, I
    HALL, JE
    VODYANOY, V
    BIOPHYSICAL JOURNAL, 1988, 53 (05) : 649 - 657
  • [38] Wrapping and Internalization of Nanoparticles by Lipid Bilayers: a Computer Simulation Study
    Yang, Kai
    Ma, Yu-qiang
    AUSTRALIAN JOURNAL OF CHEMISTRY, 2011, 64 (07) : 894 - 899
  • [39] Protein adsorption on nanoparticles: model development using computer simulation
    Shao, Qing
    Hall, Carol K.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (41)
  • [40] Physical Properties and Reactivity of Microdomains in Phosphatidylinositol-Containing Supported Lipid Bilayer
    Motegi, Toshinori
    Takiguchi, Kingo
    Tanaka-Takiguchi, Yohko
    Itoh, Toshiki
    Tero, Ryugo
    MEMBRANES, 2021, 11 (05)