Computer Simulation of the Effects of Nanoparticles' Adsorption on the Properties of Supported Lipid Bilayer

被引:29
|
作者
Lin, Xubo
Wang, Changling
Wang, Meng
Fang, Kun
Gu, Ning [1 ]
机构
[1] Southeast Univ, State Key Lab Bioelect, Nanjing 210096, Jiangsu, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2012年 / 116卷 / 33期
基金
中国国家自然科学基金;
关键词
COARSE-GRAINED MODEL; MOLECULAR-DYNAMICS; GOLD NANOPARTICLES; LATERAL DIFFUSION; MEMBRANES; SURFACE; WATER; MONOLAYERS; THERMODYNAMICS; TRANSLOCATION;
D O I
10.1021/jp305784z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Supported lipid bilayer (SLB) represents a kind of well-established model cell membrane and is also used for many biosensors or biodevices. Here, for the first time, we use molecular dynamics simulation to study the effects of nanoparticle (NP) adsorption on SLB. In our simulations, the surface charge properties and the heating effects of NPs are investigated. Results show that NPs adsorption behavior, SLB's diffusion ability, and local order parameter distribution are largely dominated by the property of the NPs' surface charge. Meanwhile the NPs' heating can increase the nearby lipids' and water's thermal motions, thus disrupting the surface charge's domination on the aforementioned properties. Besides, we find that the solid support may induce more intense thermal motions but poorer diffusion ability for the lipid leaflet closer to the support. This study provides useful insights on the NPs' disruption to the functioning of the biological membrane and the performance of SLB-based biosensors or biodevices.
引用
收藏
页码:17960 / 17968
页数:9
相关论文
共 50 条
  • [1] Computer Simulation of the Inclusion of Hydrophobic Nanoparticles into a Lipid Bilayer
    Li, Yang
    Gu, Ning
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2010, 10 (11) : 7616 - 7619
  • [2] Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer
    Yang K.
    Ma Y.-Q.
    Nature Nanotechnology, 2010, 5 (8) : 579 - 583
  • [3] Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer
    Yang, Kai
    Ma, Yu-Qiang
    NATURE NANOTECHNOLOGY, 2010, 5 (08) : 579 - 583
  • [4] Modification of a supported lipid bilayer by polyelectrolyte adsorption
    Feng, ZV
    Granick, S
    Gewirth, AA
    LANGMUIR, 2004, 20 (20) : 8796 - 8804
  • [5] Mitigating effects of osmolytes on the interactions between nanoparticles and supported lipid bilayer
    Xia, Zehui
    Lau, Boris L. T.
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 568 : 1 - 7
  • [6] Raman Spectroscopy of Supported Lipid Bilayer Nanoparticles
    Ahmed, Selver
    Wunder, Stephanie L.
    Nickolov, Zhorro S.
    SPECTROSCOPY, 2011, : 8 - 20
  • [7] Membrane fluidity and the surface properties of the lipid bilayer: ESR experiment and computer simulation
    Man, Dariusz
    Olchawa, Ryszard
    Kubica, Krystian
    JOURNAL OF LIPOSOME RESEARCH, 2010, 20 (03) : 211 - 218
  • [8] Electrical properties of supported lipid bilayer membranes
    Wiegand, G
    Arribas-Layton, N
    Hillebrandt, H
    Sackmann, E
    Wagner, P
    JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (16): : 4245 - 4254
  • [9] Revealing the dynamic adsorption and diffusion of peptide amphiphile on supported lipid bilayer by single molecule experiment and simulation
    Chen, Zhenxian
    Wei, Wei
    Peng, Haiyan
    Jiang, Hao
    Xiong, Bijin
    Zhu, Jintao
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2021, 204
  • [10] Separation of supported lipid bilayer nanoparticles from excess vesicles in solution
    Wang, Hairong
    Drazenovic, Jelena
    Zhou, Hongwen
    Wunder, Stephanie L.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244