Subfactors of Index Less Than 5, Part 3: Quadruple Points

被引:21
作者
Izumi, Masaki [1 ]
Jones, Vaughan F. R. [2 ]
Morrison, Scott [2 ]
Snyder, Noah [3 ]
机构
[1] Kyoto Univ, Grad Sch Sci, Dept Math, Sakyo Ku, Kyoto 6068502, Japan
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[3] Columbia Univ, Dept Math, New York, NY 10026 USA
基金
美国国家科学基金会;
关键词
PRINCIPAL GRAPHS; CATEGORIES;
D O I
10.1007/s00220-012-1472-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
One major obstacle in extending the classification of small index subfactors beyond 3 + root 3 is the appearance of infinite families of candidate principal graphs with 4-valent vertices (in particular, the "weeds" Q and Q' from Part 1 (Morrison and Snyder in Commun. Math. Phys., doi: 10.1007/s00220-012-1426-y, 2012). Thus instead of using triple point obstructions to eliminate candidate graphs, we need to develop new quadruple point obstructions. In this paper we prove two quadruple point obstructions. The first uses quadratic tangles techniques and eliminates the weed Q' immediately. The second uses connections, and when combined with an additional number theoretic argument it eliminates both weeds Q and Q'. Finally, we prove the uniqueness (up to taking duals) of the 3311 Goodman-de la Harpe-Jones subfactor using a combination of planar algebra techniques and connections.
引用
收藏
页码:531 / 554
页数:24
相关论文
共 28 条
[1]  
Asaeda M, 1999, COMMUN MATH PHYS, V202, P1, DOI 10.1007/s002200050574
[2]   On Haagerup's List of Potential Principal Graphs of Subfactors [J].
Asaeda, Marta ;
Yasuda, Seidai .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 286 (03) :1141-1157
[3]   Constructing the extended Haagerup planar algebra [J].
Bigelow, Stephen ;
Morrison, Scott ;
Peters, Emily ;
Snyder, Noah .
ACTA MATHEMATICA, 2012, 209 (01) :29-82
[4]   Skein theory for the ADE planar algebras [J].
Bigelow, Stephen .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (05) :658-666
[5]   Principal graphs of subfactors with small Jones index [J].
Bisch, D .
MATHEMATISCHE ANNALEN, 1998, 311 (02) :223-231
[6]  
BISCH D, 1994, ALGEBRAIC METHODS OP, P175
[7]   Cyclotomic Integers, Fusion Categories, and Subfactors [J].
Calegari, Frank ;
Morrison, Scott ;
Snyder, Noah .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 303 (03) :845-896
[8]   REMARKS ON GALOIS SYMMETRY IN RATIONAL CONFORMAL FIELD-THEORIES [J].
COSTE, A ;
GANNON, T .
PHYSICS LETTERS B, 1994, 323 (3-4) :316-321
[9]   MARKOV TRACES AND II1-FACTORS IN CONFORMAL FIELD-THEORY [J].
DEBOER, J ;
GOEREE, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 139 (02) :267-304
[10]   On fusion categories [J].
Etingof, P ;
Nikshych, D ;
Ostrik, V .
ANNALS OF MATHEMATICS, 2005, 162 (02) :581-642