Detect visual field using eye tracking and Steady-state visual evoked potential

被引:0
作者
Zhang Nannan [1 ]
Liu, Yadong [1 ]
Zhou, Zongtan [1 ]
Hu, Dewen [1 ]
Yin Erwei [2 ]
机构
[1] Natl Univ Def Technol, Coll Mechatron & Automat, Changsha, Hunan, Peoples R China
[2] China Astronaut Res & Training Ctr, Natl Key Lab Human Factors Engn, Beijing, Peoples R China
来源
2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC) | 2017年
基金
中国国家自然科学基金;
关键词
Steady-state visual evoked potential (SSVEP); visual field; eye tracking; BRAIN-COMPUTER INTERFACE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper makes the subjects' sight locked in a certain area using an eye tracker, getting Steady-state visual evoked potential (SSVEP) from flickering stimuli with a fixed frequency but at random positions, in order to observe the impact of stimulus at different positions and their distances on the electroencephalogram (EEG). The result suggests that if human have to select the positions of stimuli of SSVEP-BCI, it is an agreeable strategy to separate them at least 4 degrees for avoiding the possible mistakes. We hope that it could help in setting distances between stimuli or updating pattern selection algorithms in the future BCI system and other paradigms.
引用
收藏
页码:3125 / 3128
页数:4
相关论文
共 50 条
[41]   Advances in brain-computer interface based on high-frequency steady-state visual evoked potential [J].
Zheng C. ;
Liu Y. ;
Xiao X. ;
Zhou X. ;
Xu F. ;
Xu M. ;
Ming D. .
Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2023, 40 (01) :155-162
[42]   A NOVEL REINFORCEMENT LEARNING STRATEGY FOR SEQUENTIAL DETECTION OF STEADY-STATE VISUAL EVOKED POTENTIAL-BASED BCI [J].
Cao, Lei ;
Jin, Yi ;
Wang, Zijan ;
Fan, Chunjiang .
JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2023, 24 (08) :1819-1833
[43]   Adaptive Time Segment Analysis for Steady-State Visual Evoked Potential Based Brain-Computer Interfaces [J].
Cecotti, H. .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2020, 28 (03) :552-560
[44]   Building a Tensor Framework for the Analysis and Classification of Steady-State Visual Evoked Potentials in Children [J].
Kinney-Lang, Eli ;
Ebied, Ahmed ;
Escudero, Javier .
2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, :296-300
[45]   Bispectral analysis-based approach for steady-state visual evoked potentials detection [J].
Omar Trigui ;
Wassim Zouch ;
Mohamed Ben Slima ;
Mohamed Ben Messaoud .
Multimedia Tools and Applications, 2019, 78 :12865-12882
[46]   Does Frequency Resolution Affect the Classification Performance of Steady-State Visual Evoked Potentials? [J].
Nakanishi, Masaki ;
Wang, Yijun ;
Wang, Yu-Te ;
Jung, Tzyy-Ping .
2017 8TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2017, :341-344
[47]   Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials [J].
Waytowich, Nicholas ;
Lawhern, Vernon J. ;
Garcia, Javier O. ;
Cummings, Jennifer ;
Faller, Josef ;
Sajda, Paul ;
Vettel, Jean M. .
JOURNAL OF NEURAL ENGINEERING, 2018, 15 (06)
[48]   Intermodulation frequency components in steady-state visual evoked potentials: Generation, characteristics and applications [J].
Chen, Yuzhen ;
Bai, Jiawen ;
Shi, Nanlin ;
Jiang, Yunpeng ;
Chen, Xiaogang ;
Ku, Yixuan ;
Gao, Xiaorong .
NEUROIMAGE, 2024, 303
[49]   Bispectral analysis-based approach for steady-state visual evoked potentials detection [J].
Trigui, Omar ;
Zouch, Wassim ;
Ben Slima, Mohamed ;
Ben Messaoud, Mohamed .
MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (10) :12865-12882
[50]   The Role of Visual Noise in Influencing Mental Load and Fatigue in a Steady-State Motion Visual Evoked Potential-Based Brain-Computer Interface [J].
Xie, Jun ;
Xu, Guanghua ;
Luo, Ailing ;
Li, Min ;
Zhang, Sicong ;
Han, Chengcheng ;
Yan, Wenqiang .
SENSORS, 2017, 17 (08)