Polymers for Melt Electrowriting

被引:166
作者
Kade, Juliane C. [1 ]
Dalton, Paul D. [1 ]
机构
[1] Univ Clin Wurzburg, Bavarian Polymer Inst, Dept Funct Mat Med & Dent, Pleicherwall 2, D-97070 Wurzburg, Germany
关键词
3D printing; additive manufacturing; biomedical materials; electrohydrodynamic materials; melt electrospinning writing; EPSILON-CAPROLACTONE; FIBROUS SCAFFOLDS; BIOACTIVE GLASS; POLY(EPSILON-CAPROLACTONE); DESIGN; MICROARCHITECTURE; PROLIFERATION; FABRICATION; PLATFORM; GELATIN;
D O I
10.1002/adhm.202001232
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Melt electrowriting (MEW) is an emerging high-resolution additive manufacturing technique based on the electrohydrodynamic processing of polymers. MEW is predominantly used to fabricate scaffolds for biomedical applications, where the microscale fiber positioning has substantial implications in its macroscopic mechanical properties. This review gives an update on the increasing number of polymers processed via MEW and different commercial sources of the gold standard poly(epsilon-caprolactone) (PCL). A description of MEW-processed polymers beyond PCL is introduced, including blends and coated fibers to provide specific advantages in biomedical applications. Furthermore, a perspective on printer designs and developments is highlighted, to keep expanding the variety of processable polymers for MEW.
引用
收藏
页数:18
相关论文
共 140 条
  • [1] The influence of sputter deposition parameters on piezoelectric and mechanical properties of AlN thin films
    Ababneh, A.
    Schmid, U.
    Hernando, J.
    Sanchez-Rojas, J. L.
    Seidel, H.
    [J]. MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2010, 172 (03): : 253 - 258
  • [2] Effects of Gradient and Offset Architectures on the Mechanical and Biological Properties of 3-D Melt Electrowritten (MEW) Scaffolds
    Abbasi, Naghmeh
    Abdal-hay, Abdalla
    Hamlet, Stephen
    Graham, Elizabeth
    Ivanovski, Saso
    [J]. ACS BIOMATERIALS SCIENCE & ENGINEERING, 2019, 5 (07): : 3448 - 3461
  • [3] Novel polycaprolactone/hydroxyapatite nanocomposite fibrous scaffolds by direct melt-electrospinning writing
    Abdal-hay, Abdalla
    Abbasi, Naghmeh
    Gwiazda, Marcin
    Hamlet, Stephen
    Ivanovski, Saso
    [J]. EUROPEAN POLYMER JOURNAL, 2018, 105 : 257 - 264
  • [4] Biomimicry in Bio-Manufacturing: Developments in Melt Electrospinning Writing Technology Towards Hybrid Biomanufacturing
    Afghah, Ferdows
    Dikyol, Caner
    Altunbek, Mine
    Koc, Bahattin
    [J]. APPLIED SCIENCES-BASEL, 2019, 9 (17):
  • [5] Tensile Properties of Composite Reinforced with Three-Dimensional Printed Fibers
    Agarwal, Komal
    Sahay, Rahul
    Baji, Avinash
    [J]. POLYMERS, 2020, 12 (05)
  • [6] Alsoufi M.S., 2017, INT J MECH MECHATRON, V17, P7
  • [7] Development and properties of polycaprolactone/hydroxyapatite composite biomaterials
    Azevedo, MC
    Reis, RL
    Claase, BM
    Grijpma, DW
    Feijen, J
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2003, 14 (02) : 103 - 107
  • [8] Melt electrohydrodynamic 3D printed poly (ε-caprolactone)/polyethylene glycol/roxithromycin scaffold as a potential anti-infective implant in bone repair
    Bai, Jianfu
    Wang, Han
    Gao, Wei
    Liang, Feng
    Wang, Zixu
    Zhou, Ying
    Lan, Xingzi
    Chen, Xun
    Cai, Nian
    Huang, Weimin
    Tang, Yadong
    [J]. INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2020, 576
  • [9] Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment
    Bartnikowski, Michal
    Dargaville, Tim R.
    Ivanovski, Saso
    Hutmacher, Dietmar W.
    [J]. PROGRESS IN POLYMER SCIENCE, 2019, 96 : 1 - 20
  • [10] An Integrated Design, Material, and Fabrication Platform for Engineering Biomechanically and Biologically Functional Soft Tissues
    Bas, Onur
    D'Angella, Davide
    Baldwin, Jeremy G.
    Castro, Nathan J.
    Wunner, Felix M.
    Saidy, Navid T.
    Kollmannsberger, Stefan
    Reali, Alessandro
    Rank, Ernst
    De-Juan-Pardo, Elena M.
    Hutmacher, Dietmar W.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (35) : 29430 - 29437