The effect of FeMn and FeB additive on hematite (α-Fe2O3) and their characterization

被引:0
作者
Ginting, M. [1 ]
Pane, J. [2 ]
Simbolon, D. H. [3 ]
Simbolon, S. [4 ]
Yunus, M. [5 ]
Kurniawan, C. [1 ]
Sebayang, P. [1 ,4 ]
机构
[1] Lembaga Ilmu Pengetahuan Indonesia LIPI, Pusat Penelitian Fis, Tangerang Selatan 15314, Indonesia
[2] Univ HKBP Nomensen, Jl Sutomo 4, Medan 20234, Indonesia
[3] Univ Qual, Jl Ngumban Surbakti 18, Medan 26132, Indonesia
[4] Univ Pamulang, Jl Surya Kencana 1, Tangerang Selatan 15417, Indonesia
[5] BATAN, Ctr Nucl Reactor Technol & Safety, Kompleks Puspiptek Serpong, Tangerang Selatan 15314, Indonesia
来源
INTERNATIONAL SYMPOSIUM ON FRONTIER OF APPLIED PHYSICS, 2018 | 2019年 / 1191卷
关键词
FERRITE NANOPARTICLES; MAGNETIC-PROPERTIES; MAGHEMITE;
D O I
10.1088/1742-6596/1191/1/012035
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this study, the mineral material addition of FeMn and FeB to the hematite (alpha-Fe2O3) by varying each mass concentration of 0, 4, and 8 wt.% have been prepared by powder metallurgy method. The mixing process of the powder was done by high energy milling (HEM) for 1 h. Then, the powders were calcined at temperature of 1000 degrees C for 2 h. The Effect of FeMn and FeB additives on alpha-Fe2O3 causes the increasing of the particles diameter. The increasing of FeMn additive increases the powder density of material, but the addition of FeB decreases it. The material of alpha-Fe2O3 with FeMn additive has dominant phases of alpha-Fe2O3 and the minor phases of MnO2 and Fe2O3. The material of alpha-Fe2O3 with FeB additive has two phases as magnetite (Fe2O3) and hematite (alpha-Fe2O3). The magnetic properties of a alpha-Fe(2)O(3)material with FeMn and FeB additives decrease the saturation value and coercivity.
引用
收藏
页数:6
相关论文
共 18 条
  • [1] Bagheri S., 2013, Res. J. Chem. Sci, V3, P62
  • [2] Crystal structure and magnetic properties of Fe2OBO3
    Bell, AMT
    Rodriguez-Martinez, LM
    Attfield, JP
    Cernik, RJ
    Clarke, JF
    Perkins, DA
    [J]. EPDIC 5, PTS 1 AND 2, 1998, 278-2 : 708 - 713
  • [3] Chirita M., 2009, CHEM B POLITEH U TIM, V54, P1
  • [4] Single crystalline magnetite, maghemite, and hematite nanoparticles with rich coercivity
    Dar, M. Ibrahim
    Shivashankar, S. A.
    [J]. RSC ADVANCES, 2014, 4 (08): : 4105 - 4113
  • [5] Kadir I A, 2013, AFRICAN J PURE APPL, V7, P114
  • [6] Investigation of the anticorrosion efficiency of ferrites Mg1-xZnxFe2O4 with different particle morphology and chemical composition in epoxy-ester resin-based coatings
    Kalendova, Andrea
    Rysanek, Petr
    Nechvilova, Katerina
    [J]. PROGRESS IN ORGANIC COATINGS, 2015, 86 : 147 - 163
  • [7] Ferrite nanoparticles: Synthesis, characterisation and applications in electronic device
    Kefeni, Kebede K.
    Msagati, Titus A. M.
    Mamba, Bhekie B.
    [J]. MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2017, 215 : 37 - 55
  • [8] Mn-Doped Maghemite (γ-Fe2O3) from Metal-Organic Framework Accompanying Redox Reaction in a Bimetallic System: The Structural Phase Transitions and Catalytic Activity toward NOx Removal
    Lee, Junhyung
    Kwak, Seung-Yeop
    [J]. ACS OMEGA, 2018, 3 (03): : 2634 - 2640
  • [9] Kinetics of Magnetite (Fe3O4) Oxidation to Hematite (Fe2O3) in Air for Chemical Looping Combustion
    Monazam, Esmail R.
    Breault, Ronald W.
    Siriwardane, Ranjani
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2014, 53 (34) : 13320 - 13328
  • [10] Synthesis and characterization of zinc ferrite nanoparticles by a thermal treatment method
    Naseri, Mahmoud Goodarz
    Saion, Elias B.
    Hashim, Mansor
    Shaari, Abdul Halim
    Ahangar, Hossein Abasstabar
    [J]. SOLID STATE COMMUNICATIONS, 2011, 151 (14-15) : 1031 - 1035