Developmental regulation of two distinct neuronal phenotypes in rat dorsal root ganglia

被引:27
|
作者
Goldstein, ME
Grant, P
House, SB
Henken, DB
Gainer, H
机构
[1] NINCDS,NEUROCHEM LAB,BETHESDA,MD 20892
[2] NINCDS,EXPTL NEUROPATHOL LAB,BETHESDA,MD 20892
关键词
peripherin; neurofilaments; CGRP; substance P; sensory neurons; mRNA;
D O I
10.1016/0306-4522(95)00404-1
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In a previous study we described two distinct neuronal phenotypes in rat dorsal root ganglia based on immunocytochemical assays for the neuronal intermediate filament proteins, peripherin and low-molecular-weight neurofilaments [Goldstein M. E. et al. (1991) J. Neurosci. Res. 30, 92-104]. In this paper we have extended this classification by using in situ hybridization to localize and evaluate the levels of various cytoskeletal and neuropeptide messenger RNAs within the peripherin-immunoreactive and peripherin-immunoreactive-negative neurons found in embryonic day 15 and 20, postnatal day 2 and adult dorsal root ganglia. We found in postnatal and adult dorsal root ganglia in vivo that the large, peripherin-immunoreactive-negative neurons, which are intensely stained by low-molecular-weight neurofilament antibodies, also contain high levels of low, medium and high-molecular-weight neurofilament messenger RNAs, whereas the smaller peripherin-immunoreactive neurons do not. On the other hand, both cell types contained comparable levels of peripherin and alpha-tubulin messenger RNA. The presence of peripherin messenger RNA but no peripherin immunoreactivity in the large cells suggested either a translational or post-translational regulation of this polypeptide; or rapid clearance of this protein from the perikaryon into the axon. In adult dorsal root ganglia, more than 50% of the peripherin-immunoreactive neurons also contained high levels of substance P and/or calcitonin gene-related peptide messenger RNAs, while less than 20% of the large peripherin-immunoreactive-negative neurons did. The attainment of these phenotypic characteristics during development in vivo was studied by northern blot and in situ hybridization histochemistry. In early embryonic stages (embryonic days 15-16), virtually all neurons were peripherin-immunoreactive and were positive for peripherin, alpha-tubulin and low-molecular-weight neurofilament messenger RNAs, suggesting a homogeneous population. By embryonic day 20, the two adult phenotypes became clearly evident, and were fully established by postnatal day 2. In cultures of embryonic day 15 dorsal root ganglion neurons grown in the presence of nerve growth factor, peripherin and low-molecular-weight neurofilament messenger RNAs were expressed in all neurons, even after nine days in vitro, similar to embryonic dorsal root ganglia in vivo. Nerve growth factor supplemented by skeletal and heart muscle extracts did up-regulate neurofilament gene expression, but not to the extent characteristic of the peripherin-immunoreactive-negative adult phenotype. These results suggest that development of the mature phenotype of dorsal root ganglion neurons occurs by postnatal day 2 in vitro and is dependent upon target contact and/or target-derived factors.
引用
收藏
页码:243 / 258
页数:16
相关论文
共 50 条
  • [22] Localization of the neuropeptide manserin in rat dorsal root ganglia: Involvement in nociceptive function
    Ida-Eto, Michiru
    Ohkawara, Takeshi
    Narita, Masaaki
    ACTA HISTOCHEMICA, 2021, 123 (08)
  • [23] Prolactin receptor expression in mouse dorsal root ganglia neuronal subtypes is sex-dependent
    Patil, Mayur
    Hovhannisyan, Anahit H.
    Wangzhou, Andi
    Mecklenburg, Jennifer
    Koek, Wouter
    Goffin, Vincent
    Grattan, David
    Boehm, Ulrich
    Dussor, Gregory
    Price, Theodore J.
    Akopian, Armen N.
    JOURNAL OF NEUROENDOCRINOLOGY, 2019, 31 (08)
  • [24] Time- and Concentration-Dependent Adverse Effects of Paclitaxel on Non-Neuronal Cells in Rat Primary Dorsal Root Ganglia
    Elfarnawany, Amira
    Dehghani, Faramarz
    TOXICS, 2023, 11 (07)
  • [25] Two N-methyl-D-aspartate receptors in rat dorsal root ganglia with different subunit composition and localization
    Marvizón, JCG
    McRoberts, JA
    Ennes, HS
    Song, BB
    Wang, XR
    Jinton, L
    Corneliussen, B
    Mayer, EA
    JOURNAL OF COMPARATIVE NEUROLOGY, 2002, 446 (04) : 325 - 341
  • [26] Localization of central cannabinoid CB1 receptor messenger RNA in neuronal subpopulations of rat dorsal root ganglia:: A double-label in situ hybridization study
    Hohmann, AG
    Herkenham, M
    NEUROSCIENCE, 1999, 90 (03) : 923 - 931
  • [27] Effect of monensin on the levels of tachykinins and their processing enzyme activity in rat dorsal root ganglia
    Chikuma, T
    Inomata, Y
    Tsuchida, K
    Hojo, H
    Kato, T
    NEUROSCIENCE LETTERS, 2002, 326 (02) : 89 - 92
  • [28] The Semaphorin Receptor PlexinA3 Mediates Neuronal Apoptosis during Dorsal Root Ganglia Development
    Ben-Zvi, Ayal
    Manor, Osnat
    Schachner, Melitta
    Yaron, Avraham
    Tessier-Lavigne, Marc
    Behar, Oded
    JOURNAL OF NEUROSCIENCE, 2008, 28 (47) : 12427 - 12432
  • [29] A developmental atlas of somatosensory diversification and maturation in the dorsal root ganglia by single-cell mass cytometry
    Keeler, Austin B.
    Van Deusen, Amy L.
    Cheng, Irene
    Williams, Corey M.
    Goggin, Sarah M.
    Hirt, Ashley K.
    Vradenburgh, Shayla A.
    Fread, Kristen, I
    Puleo, Emily A.
    Jin, Lucy
    Deppmann, Christopher D.
    Zunder, Eli R.
    Calhan, Yipkin
    NATURE NEUROSCIENCE, 2022, 25 (11) : 1543 - +
  • [30] Pituitary adenylate cyclase activating peptide expression in the rat dorsal root ganglia: Up-regulation after peripheral nerve injury
    Zhang, YZ
    Hannibal, J
    Zhao, Q
    Moller, K
    Danielsen, N
    Fahrenkrug, J
    Sundler, F
    NEUROSCIENCE, 1996, 74 (04) : 1099 - 1110