Analyze and Process Atomic Clock Difference Data with Hilbert-Huang Transform

被引:0
作者
Guo Jisheng [1 ]
Zhu Jiangmiao [1 ]
Wu Wenjuan [1 ]
Gao Yuan
机构
[1] Beijing Univ Technol, Sch Elect & Control Engn, Beijing 100124, Peoples R China
来源
PROCEEDINGS OF 2012 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2012) | 2012年
关键词
clock difference; atomic clock; Hilbert-Huang Transform; EEMD; EMPIRICAL MODE DECOMPOSITION; TIME; PREDICTION;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Atomic clock difference (errors) contains various kinds of noise and it can be characterized to as non-stationary. Hilbert-Huang Transform (HHT), a new adaptive method based on empirical mode decomposition (EMD) and Hilbert spectral analysis, was used to analyze and process atomic clock difference. Taking real data for discussion, the results show that HHT method is practical and versatile to handle noisy data and characterize the clock behavior.
引用
收藏
页码:238 / 242
页数:5
相关论文
共 16 条
  • [2] Empirical mode decomposition as a filter bank
    Flandrin, P
    Rilling, G
    Gonçalvés, P
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2004, 11 (02) : 112 - 114
  • [3] Galleani L, 2010, IEEE CONTR SYST MAG, V30, P44, DOI 10.1109/MCS.2009.935568
  • [4] Haibo Y., 2008, METROLOGIA, V45, pS1
  • [5] The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
    Huang, NE
    Shen, Z
    Long, SR
    Wu, MLC
    Shih, HH
    Zheng, QN
    Yen, NC
    Tung, CC
    Liu, HH
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1971): : 903 - 995
  • [6] A review on Hilbert-Huang transform: method and its applications to geophysical studies
    Huang, Norden E.
    Wu, Zhaohua
    [J]. REVIEWS OF GEOPHYSICS, 2008, 46 (02)
  • [7] ON HILBERT SPECTRAL REPRESENTATION: A TRUE TIME-FREQUENCY REPRESENTATION FOR NONLINEAR AND NONSTATIONARY DATA
    Huang, Norden E.
    Chen, Xianyao
    Lo, Men-Tzung
    Wu, Zhaohua
    [J]. ADVANCES IN DATA SCIENCE AND ADAPTIVE ANALYSIS, 2011, 3 (1-2) : 63 - 93
  • [8] TREND EXTRACTION FOR SEASONAL TIME SERIES USING ENSEMBLE EMPIRICAL MODE DECOMPOSITION
    Mhamdi, Farouk
    Poggi, Jean-Michel
    Jaidane, Meriem
    [J]. ADVANCES IN DATA SCIENCE AND ADAPTIVE ANALYSIS, 2011, 3 (03) : 363 - 383
  • [9] Moghtaderi A., 2011, COMPUTATIONAL STAT D
  • [10] TREND FILTERING: EMPIRICAL MODE DECOMPOSITIONS VERSUS l(1) AND HODRICK-PRESCOTT
    Moghtaderi, Azadeh
    Borgnat, Pierre
    Flandrin, Patrick
    [J]. ADVANCES IN DATA SCIENCE AND ADAPTIVE ANALYSIS, 2011, 3 (1-2) : 41 - 61