A Probabilistic Approach Considering Contingency Parameters for Peak Load Demand Forecasting

被引:1
作者
Shabbir, Md Nasmus Sakib Khan [1 ]
Ali, Mohammad Zawad [1 ]
Liang, Xiaodong [1 ]
Chowdhury, Muhammad Sifatul Alain [1 ]
机构
[1] Mem Univ Newfoundland, Dept Elect & Comp Engn, St John, NF A1B 3X9, Canada
来源
CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING-REVUE CANADIENNE DE GENIE ELECTRIQUE ET INFORMATIQUE | 2018年 / 41卷 / 04期
关键词
Bayesian network; contingency parameters; generation planning; load forecasting; Monte Carlo simulation; ELECTRIC-LOAD; REGRESSION-MODEL; POWER-SYSTEMS; ENERGY; HORIZONS;
D O I
10.1109/CJECE.2018.2876820
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate load forecasting is a critical step for power system generation planning. Contingency parameters of the system and their dynamic characteristics should be taken into account for the purpose of load forecasting. In this paper, a probabilistic load forecasting algorithm considering contingency parameters is developed for the peak load forecasting. Using the chi-square distribution test and historical data, the probabilistic distribution of contingency parameters can be determined. In a case study, the Monte Carlo simulation is run to forecast load demand and generation scenarios of Bangladesh based on the developed adaptive algorithm and the calculated probabilistic distribution. The influence of contingency parameters is evaluated using a Bayesian network in a sensitivity study.
引用
收藏
页码:224 / 233
页数:10
相关论文
共 34 条
  • [11] Haldar A, 2000, Probability, reliability and statistical methods in engineering design
  • [12] Probabilistic electric load forecasting: A tutorial review
    Hong, Tao
    Fan, Shu
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 2016, 32 (03) : 914 - 938
  • [13] Long Term Probabilistic Load Forecasting and Normalization With Hourly Information
    Hong, Tao
    Wilson, Jason
    Xie, Jingrui
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2014, 5 (01) : 456 - 462
  • [14] Islam B.U., 2011, Int. J. Comput. Sci. Issues, V8, P504
  • [15] A review of energy sector of Bangladesh
    Islam, Saiful
    Khan, Md. Ziaur Rahman
    [J]. 1ST INTERNATIONAL CONFERENCE ON ENERGY AND POWER, ICEP2016, 2017, 110 : 611 - 618
  • [16] FORECASTING MONTHLY ELECTRIC-LOAD AND ENERGY FOR A FAST-GROWING UTILITY USING AN ARTIFICIAL NEURAL-NETWORK
    ISLAM, SM
    ALALAWI, SM
    ELLITHY, KA
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 1995, 34 (01) : 1 - 9
  • [17] Monthly electric demand forecasting with neural filters
    Jaramillo-Moran, Miguel A.
    Gonzalez-Romera, Eva
    Carmona-Fernandez, Diego
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2013, 49 : 253 - 263
  • [18] Khairul A., 2011, J SCI TECHNOL J SEL, P13
  • [19] Forecasting the load of electrical power systems in mid- and long-term horizons: a review
    Khuntia, Swasti R.
    Rueda, Jose L.
    van der Meijden, Mart A. M. M.
    [J]. IET GENERATION TRANSMISSION & DISTRIBUTION, 2016, 10 (16) : 3971 - 3977
  • [20] Time-horizons in the planning and operation of transmission networks: an overview
    Khuntia, Swasti R.
    Tuinema, Bart W.
    Rueda, Jose L.
    van der Meijden, Mart A. M. M.
    [J]. IET GENERATION TRANSMISSION & DISTRIBUTION, 2016, 10 (04) : 841 - 848