Material properties and modeling characteristics for MnFeP1-xAsx materials for application in magnetic refrigeration

被引:35
作者
Engelbrecht, K. [1 ]
Nielsen, K. K. [1 ]
Bahl, C. R. H. [1 ]
Carroll, C. P. [2 ]
van Asten, D. [3 ]
机构
[1] Tech Univ Denmark, DTU Energy Convers & Storage, DK-4000 Roskilde, Denmark
[2] BASF Future Business GmbH, D-67063 Ludwigshafen, Germany
[3] BASF Nederland BV, NL-3454 De Meern, Netherlands
关键词
D O I
10.1063/1.4803495
中图分类号
O59 [应用物理学];
学科分类号
摘要
Compounds of MnFeP1-xAsx have received attention recently for their use in active magnetic regenerators (AMR) because of their relatively high isothermal entropy change and adiabatic temperature change with magnetization. However, the materials also generally exhibit a significant magnetic and thermal hysteresis, and it is not well understood how the hysteresis will affect performance in a practical AMR device. The amount of hysteresis shown by a material can be controlled to an extent by tuning the processing conditions used during material synthesis; therefore, knowledge of the practical impact of hysteresis is a key element to guide successful material development and synthesis. The properties of a magnetocaloric MnFeP1-xAsx compound are characterized as a function of temperature and applied magnetic field, and the results are used to assess the effects of hysteresis on magnetocaloric properties. Different methods of building property functions from the measured specific heat, magnetization, and adiabatic temperature change are presented. It is shown that model predictions can be highly dependent on how the properties that are used by the AMR model are calculated. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 17 条
  • [1] Effect of material hysteresis in magnetic refrigeration cycles
    Basso, Vittorio
    Sasso, Carlo Paolo
    Bertotti, Giorgio
    LoBue, Martino
    [J]. INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2006, 29 (08): : 1358 - 1365
  • [2] Magnetocaloric properties of LaFe13-x-yCoxSiy and commercial grade Gd
    Bjork, R.
    Bahl, C. R. H.
    Katter, M.
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2010, 322 (24) : 3882 - 3888
  • [3] Model of a porous regenerator used for magnetic refrigeration at room temperature
    Bouchard, Jonathan
    Nesreddine, Hakim
    Galanis, Nicolas
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2009, 52 (5-6) : 1223 - 1229
  • [4] MAGNETIC HEAT PUMPING NEAR ROOM-TEMPERATURE
    BROWN, GV
    [J]. JOURNAL OF APPLIED PHYSICS, 1976, 47 (08) : 3673 - 3680
  • [5] Developments in magnetocaloric refrigeration
    Brück, E
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2005, 38 (23) : R381 - R391
  • [6] Magnetocaloric effects in MnFeP1-xAsx-based compounds
    Brück, E
    Ilyn, M
    Tishin, AM
    Tegus, O
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2005, 290 : 8 - 13
  • [7] BRUCK E, 2006, Patent No. 20040250550
  • [8] Spatially resolved measurements of the magnetocaloric effect and the local magnetic field using thermography
    Christensen, D. V.
    Bjork, R.
    Nielsen, K. K.
    Bahl, C. R. H.
    Smith, A.
    Clausen, S.
    [J]. JOURNAL OF APPLIED PHYSICS, 2010, 108 (06)
  • [9] Evaluating the effect of magnetocaloric properties on magnetic refrigeration performance
    Engelbrecht, K.
    Bahl, C. R. H.
    [J]. JOURNAL OF APPLIED PHYSICS, 2010, 108 (12)
  • [10] Experimental results for a magnetic refrigerator using three different types of magnetocaloric material regenerators
    Engelbrecht, K.
    Bahl, C. R. H.
    Nielsen, K. K.
    [J]. INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2011, 34 (04): : 1132 - 1140