The law of the iterated logarithm for functionals of Harris recurrent Markov chains: Self normalization

被引:10
作者
Chen, X [1 ]
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
关键词
law of the iterated logarithm; Harris recurrent Markov chain; invariant measure; atom; D-set;
D O I
10.1023/A:1021630228280
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let {X-n}(n greater than or equal to 0) be a Harris recurrent Markov chain with state space E, transition probability P(x, A) and invariant measure pi, and let f be a real measurable function on E. We prove that with probability one, [GRAPHICS] under some best possible conditions.
引用
收藏
页码:421 / 445
页数:25
相关论文
共 27 条
[1]  
[Anonymous], 1992, Stochastic Stability of Markov chains
[2]   NEW APPROACH TO THE LIMIT THEORY OF RECURRENT MARKOV-CHAINS [J].
ATHREYA, KB ;
NEY, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 245 (NOV) :493-501
[3]  
CHEN X, IN PRESS STOCHASTIC
[4]  
CHEN X, 1999, MEMOIRS AMS, V139
[5]  
CHOW YS, 1988, PROBABILITY THEORY I
[6]   On additive functionals of Markov chains [J].
Csaki, E ;
Csorgo, M .
JOURNAL OF THEORETICAL PROBABILITY, 1995, 8 (04) :905-919
[7]  
CSAKI E, 1992, J THEORET PROBAB, V5, P679, DOI DOI 10.1007/BF01058725
[8]   A SELF-NORMALIZED ERDOS-RENYI TYPE STRONG LAW OF LARGE NUMBERS [J].
CSORGO, M ;
SHAO, QM .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1994, 50 (02) :187-196
[9]  
CSORGO M, 1985, ACTA SCI MATH, V48, P85
[10]  
CSORGO M, 1992, TECHNICAL REPORT SER, V192