Germline BRCA 1-2 status prediction through ovarian ultrasound images radiogenomics: a hypothesis generating study (PROBE study)

被引:20
作者
Nero, Camilla [1 ,4 ]
Ciccarone, Francesca [1 ]
Boldrini, Luca [2 ]
Lenkowicz, Jacopo [2 ]
Paris, Ida [1 ]
Capoluongo, Ettore Domenico [3 ]
Testa, Antonia Carla [1 ]
Fagotti, Anna [1 ]
Valentini, Vincenzo [2 ]
Scambia, Giovanni [1 ]
机构
[1] Fdn Policlin Univ A Gemelli IRCCS, Gynecol Oncol, Dipartimento Sci Salute Donna Bambino & Sanita Pu, Rome, Italy
[2] Fdn Policlin Univ A Gemelli IRCCS, Dipartimento Diagnost Immagini Radioterapia Oncol, Rome, Italy
[3] Federico II Univ CEINGE, Dept Mol Med & Med Biotechnol, Adv Biotechnol, Naples, Italy
[4] Univ Cattolica Sacro Cuore, Dept Obstet & Gynecol, Fdn Policlin Univ Agostino Gemelli IRCCS, Lgo A Gemelli 8, I-00168 Rome, Italy
关键词
MUTATION CARRIERS; BREAST-CANCER; SALPINGO-OOPHORECTOMY; RISK REDUCTION; RADIOMICS; METAANALYSIS; PREVENTION; PROGRAMS; SURGERY; WOMEN;
D O I
10.1038/s41598-020-73505-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Radiogenomics is a specific application of radiomics where imaging features are linked to genomic profiles. We aim to develop a radiogenomics model based on ovarian US images for predicting germline BRCA1/2 gene status in women with healthy ovaries. From January 2013 to December 2017 a total of 255 patients addressed to germline BRCA1/2 testing and pelvic US documenting normal ovaries, were retrospectively included. Feature selection for univariate analysis was carried out via correlation analysis. Multivariable analysis for classification of germline BRCA1/2 status was then carried out via logistic regression, support vector machine, ensemble of decision trees and automated machine learning pipelines. Data were split into a training (75%) and a testing (25%) set. The four strategies obtained a similar performance in terms of accuracy on the testing set (from 0.54 of logistic regression to 0.64 of the auto-machine learning pipeline). Data coming from one of the tested US machine showed generally higher performances, particularly with the auto-machine learning pipeline (testing set specificity 0.87, negative predictive value 0.73, accuracy value 0.72 and 0.79 on training set). The study shows that a radiogenomics model on machine learning techniques is feasible and potentially useful for predicting gBRCA1/2 status in women with healthy ovaries.
引用
收藏
页数:11
相关论文
共 49 条
[1]   Obstetric and Gynecologic Ultrasound Curriculum and Competency Assessment in Residency Training Programs: Consensus Report [J].
Abuhamad, Alfred ;
Minton, Katherine K. ;
Benson, Carol B. ;
Chudleigh, Trish ;
Crites, Lori ;
Doubilet, Peter M. ;
Driggers, Rita ;
Lee, Wesley ;
Mann, Karen V. ;
Perez, James J. ;
Rose, Nancy C. ;
Simpson, Lynn L. ;
Tabor, Ann ;
Benacerraf, Beryl R. .
JOURNAL OF ULTRASOUND IN MEDICINE, 2018, 37 (01) :19-50
[2]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[3]  
Anglian Breast Cancer Study Group, 2000, British Journal of Cancer, V83, P1301
[4]  
[Anonymous], 2013, 1205164EF1 AG HEALTH
[5]   Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history:: A combined analysis of 22 studies [J].
Antoniou, A ;
Pharoah, PDP ;
Narod, S ;
Risch, HA ;
Eyfjord, JE ;
Hopper, JL ;
Loman, N ;
Olsson, H ;
Johannsson, O ;
Borg, Å ;
Pasini, B ;
Radice, P ;
Manoukian, S ;
Eccles, DM ;
Tang, N ;
Olah, E ;
Anton-Culver, H ;
Warner, E ;
Lubinski, J ;
Gronwald, J ;
Gorski, B ;
Tulinius, H ;
Thorlacius, S ;
Eerola, H ;
Nevanlinna, H ;
Syrjäkoski, K ;
Kallioniemi, OP ;
Thompson, D ;
Evans, C ;
Peto, J ;
Lalloo, F ;
Evans, DG ;
Easton, DF .
AMERICAN JOURNAL OF HUMAN GENETICS, 2003, 72 (05) :1117-1130
[6]   BRCA in breast cancer: ESMO Clinical Recommendations [J].
Balmana, J. ;
Diez, O. ;
Castiglione, M. .
ANNALS OF ONCOLOGY, 2009, 20 :19-20
[7]   Underdiagnosis of Hereditary Breast Cancer: Are Genetic Testing Guidelines a Tool or an Obstacle? [J].
Beitsch, Peter D. ;
Whitworth, Pat W. ;
Hughes, Kevin ;
Patel, Rakesh ;
Rosen, Barry ;
Compagnoni, Gia ;
Baron, Paul ;
Simmons, Rache ;
Smith, Linda Ann ;
Grady, Ian ;
Kinney, Michael ;
Coomer, Cynara ;
Barbosa, Karen ;
Holmes, Dennis R. ;
Brown, Eric ;
Gold, Linsey ;
Clark, Patricia ;
Riley, Lee ;
Lyons, Samuel ;
Ruiz, Antonio ;
Kahn, Sadia ;
MacDonald, Heather ;
Curcio, Lisa ;
Hardwick, Mary Kay ;
Yang, Shan ;
Esplin, Ed D. ;
Nussbaum, Robert L. .
JOURNAL OF CLINICAL ONCOLOGY, 2019, 37 (06) :453-+
[8]   Radiomics: a critical step towards integrated healthcare [J].
Bodalal, Zuhir ;
Trebeschi, Stefano ;
Beets-Tan, Regina .
INSIGHTS INTO IMAGING, 2018, 9 (06) :911-914
[9]   Guidance Statement On BRCA1/2 Tumor Testing in Ovarian Cancer Patients [J].
Capoluongo, Ettore ;
Ellison, Gillian ;
Antonio Lopez-Guerrero, Jose ;
Penault-Llorca, Frederique ;
Ligtenberg, Marjolijn J. L. ;
Banerjee, Susana ;
Singer, Christian ;
Friedman, Eitan ;
Markiefka, Birgid ;
Schirmacher, Peter ;
Buttner, Reinhard ;
van Asperen, Christi J. ;
Ray-Coquard, Isabelle ;
Endris, Volker ;
Kamel-Reid, Suzanne ;
Percival, Natalie ;
Bryce, Jane ;
Rothlisberger, Benno ;
Soong, Richie ;
de Castro, David Gonzalez .
SEMINARS IN ONCOLOGY, 2017, 44 (03) :187-197
[10]   BRCA to the future: towards best testing practice in the era of personalised healthcare [J].
Capoluongo, Ettore .
EUROPEAN JOURNAL OF HUMAN GENETICS, 2016, 24 :S1-S2