Benchmarking Coherent Errors in Controlled-Phase Gates due to Spectator Qubits

被引:46
作者
Krinner, S. [1 ]
Lazar, S. [1 ]
Remm, A. [1 ]
Andersen, C. K. [1 ]
Lacroix, N. [1 ]
Norris, G. J. [1 ]
Hellings, C. [1 ]
Gabureac, M. [1 ]
Eichler, C. [1 ]
Wallraff, A. [1 ,2 ]
机构
[1] Swiss Fed Inst Technol, Dept Phys, CH-8093 Zurich, Switzerland
[2] Swiss Fed Inst Technol, Quantum Ctr, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会; 欧盟地平线“2020”;
关键词
QUANTUM; PHOTON; STATE;
D O I
10.1103/PhysRevApplied.14.024042
中图分类号
O59 [应用物理学];
学科分类号
摘要
A major challenge in operating multiqubit quantum processors is to mitigate multiqubit coherent errors. For superconducting circuits, besides crosstalk originating from imperfect isolation of control lines, dis-persive coupling between qubits is a major source of multiqubit coherent errors. We benchmark phase errors in a controlled-phase gate due to dispersive coupling of either of the qubits involved in the gate to one or more spectator qubits. We measure the associated gate infidelity using quantum-process tomog-raphy. We point out that, due to coupling of the gate qubits to a noncomputational state during the gate, two-qubit conditional-phase errors are enhanced. Our work is important for understanding limits to the fidelity of two-qubit gates with finite on -off ratio in multiqubit settings.
引用
收藏
页数:9
相关论文
共 58 条
  • [21] Characterizing large-scale quantum computers via cycle benchmarking
    Erhard, Alexander
    Wallman, Joel J.
    Postler, Lukas
    Meth, Michael
    Stricker, Roman
    Martinez, Esteban A.
    Schindler, Philipp
    Monz, Thomas
    Emerson, Joseph
    Blatt, Rainer
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [22] Foxen B., 2020, ARXIV200108343
  • [23] High-Fidelity Universal Gate Set for 9Be+ Ion Qubits
    Gaebler, J. P.
    Tan, T. R.
    Lin, Y.
    Wan, Y.
    Bowler, R.
    Keith, A. C.
    Glancy, S.
    Coakley, K.
    Knill, E.
    Leibfried, D.
    Wineland, D. J.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 117 (06)
  • [24] Building logical qubits in a superconducting quantum computing system
    Gambetta, Jay M.
    Chow, Jerry M.
    Steffen, Matthias
    [J]. NPJ QUANTUM INFORMATION, 2017, 3
  • [25] Characterization of Addressability by Simultaneous Randomized Benchmarking
    Gambetta, Jay M.
    Corcoles, A. D.
    Merkel, S. T.
    Johnson, B. R.
    Smolin, John A.
    Chow, Jerry M.
    Ryan, Colm A.
    Rigetti, Chad
    Poletto, S.
    Ohki, Thomas A.
    Ketchen, Mark B.
    Steffen, M.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (24)
  • [26] Modeling coherent errors in quantum error correction
    Greenbaum, Daniel
    Dutton, Zachary
    [J]. QUANTUM SCIENCE AND TECHNOLOGY, 2018, 3 (01):
  • [27] Dephasing-Insensitive Quantum Information Storage and Processing with Superconducting Qubits
    Guo, Qiujiang
    Zheng, Shi-Biao
    Wang, Jianwen
    Song, Chao
    Zhang, Pengfei
    Li, Kemin
    Liu, Wuxin
    Deng, Hui
    Huang, Keqiang
    Zheng, Dongning
    Zhu, Xiaobo
    Wang, H.
    Lu, C. -Y.
    Pan, Jian-Wei
    [J]. PHYSICAL REVIEW LETTERS, 2018, 121 (13)
  • [28] Errors and pseudothresholds for incoherent and coherent noise
    Gutierrez, Mauricio
    Smith, Conor
    Lulushi, Livia
    Janardan, Smitha
    Brown, Kenneth R.
    [J]. PHYSICAL REVIEW A, 2016, 94 (04)
  • [29] Superconducting Qubits: Current State of Play
    Kjaergaard, Morten
    Schwartz, Mollie E.
    Braumuller, Jochen
    Krantz, Philip
    Wang, Joel I. -J.
    Gustavsson, Simon
    Oliver, William D.
    [J]. ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 11, 2020, 2020, 11 : 369 - 395
  • [30] Charge-insensitive qubit design derived from the Cooper pair box
    Koch, Jens
    Yu, Terri M.
    Gambetta, Jay
    Houck, A. A.
    Schuster, D. I.
    Majer, J.
    Blais, Alexandre
    Devoret, M. H.
    Girvin, S. M.
    Schoelkopf, R. J.
    [J]. PHYSICAL REVIEW A, 2007, 76 (04):