Prediction-based control for a class of unstable time-delayed processes by using a modified sequential predictor

被引:5
|
作者
Hernandez-Perez, M. A. [1 ]
Fragoso-Rubio, V. [2 ]
Velasco-Villa, M. [2 ]
Muro-Cuellar, B. del [3 ]
Marquez-Rubio, J. F. [3 ]
Puebla, H. [4 ]
机构
[1] Univ Veracruzana, Inst Ingn, Juan Pablo II S-N, Boca Del Rio 94294, Veracruz, Mexico
[2] IPN, CINVESTAV, Secc Mecatron, Dept Ingn Elect, Av IPN 2508, Mexico City 07300, DF, Mexico
[3] Inst Politecn Nacl, Escuela Super Ingn Mecan & Elect, Unidad Culhuacan, Mexico City 04430, DF, Mexico
[4] Univ Autonoma Metropolitana Azcapotzalco, Mexico City 02200, DF, Mexico
关键词
Unstable delayed (bio)-chemical processes; Time-delay; Prediction-observer scheme; Modified sequential predictor; FINITE SPECTRUM ASSIGNMENT; LINEAR-SYSTEMS; SMITH PREDICTOR; INPUT-DELAY; STABILIZATION; STATE; OBSERVER; COMPENSATION; LIMITATIONS; STABILITY;
D O I
10.1016/j.jprocont.2020.05.014
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work presents a prediction-based scheme to control a class of unstable delayed (bio)-chemical processes. The main characteristic of the control scheme is that it is based on a predicted future state that is estimated using a prediction-observation protocol that allows compensating large time-delays. The convergence of the prediction error is shown through standard stability arguments. The stability of the closed-loop system is shown by invoking the separation principle between the prediction error and the control based on estimated variables feedback. Four numerical examples are used to illustrate our results, including two time-delayed benchmark case studies taken from the control process literature. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:98 / 107
页数:10
相关论文
共 50 条
  • [41] Time-delayed stochastic optimal control of strongly non-linear systems with actuator saturation by using stochastic maximum principle
    Gu, Xudong
    Zhu, Weiqiu
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2014, 58 : 199 - 205
  • [42] IMC based robust PI/PID controllers for time-delayed inverse response processes
    Irshad, Mohammad
    Ali, Ahmad
    ISA TRANSACTIONS, 2023, 134 : 278 - 289
  • [43] A single-degree-of-freedom system using a time-delayed control algorithm: principle and experimental study
    Liu, Junlong
    Li, Luyu
    Dai, Jinghui
    Ou, Jinping
    JOURNAL OF VIBRATION AND CONTROL, 2011, 17 (12) : 1840 - 1850
  • [44] Observer-Based Control for Nonlinear Time-Delayed Asynchronously Switching Systems: A New LMI Approach
    Taghieh, Amin
    Mohammadzadeh, Ardashir
    Tavoosi, Jafar
    Mobayen, Saleh
    Rojsiraphisal, Thaned
    Asad, Jihad H.
    Zhilenkov, Anton
    MATHEMATICS, 2021, 9 (22)
  • [45] 2DOF IMC and Smith-Predictor-Based Control for Stabilised Unstable First Order Time Delayed Plants
    Huba, Mikulas
    Bistak, Pavol
    Vrancic, Damir
    MATHEMATICS, 2021, 9 (09)
  • [46] A modified Smith predictor based-Sliding mode control approach for integrating processes with dead time
    Espin, Jorge
    Castrillon, Fabio
    Leiva, Hugo
    Camacho, Oscar
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (12) : 10119 - 10137
  • [47] Observer-based adaptive control of chaos in nonlinear discrete-time systems using time-delayed state feedback
    Goharrizi, Amin Yazdanpanah
    Khaki-Sedigh, Ali
    Sepehri, Nariman
    CHAOS SOLITONS & FRACTALS, 2009, 41 (05) : 2448 - 2455
  • [48] Controlling chaos in a nonlinear pendulum using an extended time-delayed feedback control method
    de Paula, Aline Souza
    Savi, Marcelo Amorim
    CHAOS SOLITONS & FRACTALS, 2009, 42 (05) : 2981 - 2988
  • [49] Pareto Multiobjective Lyapunov-Based Economic Model-Predictive Control for Nonlinear Time-Delayed System
    Pan, Yaojie
    Chen, Yong
    Liu, Yuezhi
    Zhang, Longjie
    Gao, Feng
    Huang, Qiuan
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (01): : 142 - 151
  • [50] Synchronization of Memristor-Based Time-Delayed Neural Networks via Pinning Control
    Yang, Zhanyu
    Luo, Biao
    Liu, Derong
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT III, 2017, 10636 : 699 - 708