Prediction-based control for a class of unstable time-delayed processes by using a modified sequential predictor

被引:5
作者
Hernandez-Perez, M. A. [1 ]
Fragoso-Rubio, V. [2 ]
Velasco-Villa, M. [2 ]
Muro-Cuellar, B. del [3 ]
Marquez-Rubio, J. F. [3 ]
Puebla, H. [4 ]
机构
[1] Univ Veracruzana, Inst Ingn, Juan Pablo II S-N, Boca Del Rio 94294, Veracruz, Mexico
[2] IPN, CINVESTAV, Secc Mecatron, Dept Ingn Elect, Av IPN 2508, Mexico City 07300, DF, Mexico
[3] Inst Politecn Nacl, Escuela Super Ingn Mecan & Elect, Unidad Culhuacan, Mexico City 04430, DF, Mexico
[4] Univ Autonoma Metropolitana Azcapotzalco, Mexico City 02200, DF, Mexico
关键词
Unstable delayed (bio)-chemical processes; Time-delay; Prediction-observer scheme; Modified sequential predictor; FINITE SPECTRUM ASSIGNMENT; LINEAR-SYSTEMS; SMITH PREDICTOR; INPUT-DELAY; STABILIZATION; STATE; OBSERVER; COMPENSATION; LIMITATIONS; STABILITY;
D O I
10.1016/j.jprocont.2020.05.014
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work presents a prediction-based scheme to control a class of unstable delayed (bio)-chemical processes. The main characteristic of the control scheme is that it is based on a predicted future state that is estimated using a prediction-observation protocol that allows compensating large time-delays. The convergence of the prediction error is shown through standard stability arguments. The stability of the closed-loop system is shown by invoking the separation principle between the prediction error and the control based on estimated variables feedback. Four numerical examples are used to illustrate our results, including two time-delayed benchmark case studies taken from the control process literature. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:98 / 107
页数:10
相关论文
共 51 条
[1]   Robust control design for long time-delay systems [J].
Albertos, Pedro ;
Garcia, Pedro .
JOURNAL OF PROCESS CONTROL, 2009, 19 (10) :1640-1648
[2]  
[Anonymous], 1963, Differential-Difference Equations
[3]   LINEAR-SYSTEMS WITH DELAYED CONTROLS - A REDUCTION [J].
ARTSTEIN, Z .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1982, 27 (04) :869-879
[4]  
Bequette B.W., 2003, MODELLING DESIGN SIM
[5]   Prediction-Based Stabilization of Linear Systems Subject to Input-Dependent Input Delay of Integral-Type [J].
Bresch-Pietri, Delphine ;
Chauvin, Jonathan ;
Petit, Nicolas .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (09) :2385-2399
[6]   Optimal control of linear systems with large and variable input delays [J].
Cacace, F. ;
Conte, F. ;
Germani, A. ;
Palombo, G. .
SYSTEMS & CONTROL LETTERS, 2016, 89 :1-7
[7]   Predictor-based control of linear systems with large and variable measurement delays [J].
Cacace, F. ;
Germani, A. ;
Manes, C. .
INTERNATIONAL JOURNAL OF CONTROL, 2014, 87 (04) :704-714
[8]   Model-based control of particulate processes [J].
Christofides, Panagiotis D. ;
Ei-Farrac, Nael ;
Li, Mingheng ;
Mhaskar, Prashant .
CHEMICAL ENGINEERING SCIENCE, 2008, 63 (05) :1156-1172
[9]  
Elnashaie S, 2007, Numerical techniques for chemical and biological engineers using MATLAB®: A simple bifurcation approach
[10]   Limitations of a class of stabilization methods for delay systems [J].
Engelborghs, K ;
Dambrine, M ;
Roose, D .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (02) :336-339