PrivGMM: Probability Density Estimation with Local Differential Privacy

被引:1
|
作者
Diao, Xinrong [1 ]
Yang, Wei [1 ]
Wang, Shaowei [2 ]
Huang, Liusheng [1 ]
Xu, Yang [1 ]
机构
[1] Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei, Peoples R China
[2] Tencent Games, Shenzhen, Peoples R China
来源
DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2020), PT I | 2020年 / 12112卷
关键词
Local differential privacy; Probability density estimation; Gaussian Mixture Model; LIKELIHOOD; NOISE;
D O I
10.1007/978-3-030-59410-7_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Probability density estimation is a fundamental task in data analysis that can estimate the unobservable underlying probability density function from the observed data. However, the data used for density estimation may contain sensitive information, and the public of original data will compromise individuals' privacy. To address this problem, we in this paper propose a private parametric probability density estimation mechanism, called PrivGMM. It provides strong privacy guarantees locally (e.g., on personal computers or mobile phones) and efficiently (i.e., computation cost is small) for users. Meanwhile, it provides an accurate estimation of parameters of the probability density model for data collectors. Specifically, in a local setting, each user adds noise to his/her original data, given the constraint of local differential privacy. On the server side, we employ the Gaussian Mixture Model, which is a popular model to approximate distributions. To reduce the effect of noise, we formulate the parametric estimation problem with a multi-layer latent variables structure, and utilize Expectation-Maximization algorithm to solve the Gaussian Mixture Model. Experiments in real datasets validate that our mechanism outperforms the state-of-the-art methods.
引用
收藏
页码:105 / 121
页数:17
相关论文
共 50 条
  • [31] The Role of Interactivity in Local Differential Privacy
    Joseph, Matthew
    Mao, Jieming
    Neel, Seth
    Roth, Aaron
    2019 IEEE 60TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2019), 2019, : 94 - 105
  • [32] Local Differential Privacy for Federated Learning
    Arachchige, Pathum Chamikara Mahawaga
    Liu, Dongxi
    Camtepe, Seyit
    Nepal, Surya
    Grobler, Marthie
    Bertok, Peter
    Khalil, Ibrahim
    COMPUTER SECURITY - ESORICS 2022, PT I, 2022, 13554 : 195 - 216
  • [33] Hierarchical Aggregation for Numerical Data under Local Differential Privacy
    Hao, Mingchao
    Wu, Wanqing
    Wan, Yuan
    SENSORS, 2023, 23 (03)
  • [34] Privacy Enhanced Matrix Factorization for Recommendation with Local Differential Privacy
    Shin, Hyejin
    Kim, Sungwook
    Shin, Junbum
    Xiao, Xiaokui
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2018, 30 (09) : 1770 - 1782
  • [35] Tight lower bound of sparse covariance matrix estimation inthe local differential privacy model
    Wang, Di
    Xu, Jinhui
    THEORETICAL COMPUTER SCIENCE, 2020, 815 : 47 - 59
  • [36] Distribution Simulation Under Local Differential Privacy
    Asoodeh, Shahab
    2022 17TH CANADIAN WORKSHOP ON INFORMATION THEORY (CWIT), 2022, : 57 - 61
  • [37] Fisher information under local differential privacy
    Barnes L.P.
    Chen W.-N.
    Özgür A.
    IEEE Journal on Selected Areas in Information Theory, 2020, 1 (03): : 645 - 659
  • [38] Generating Location Traces With Semantic- Constrained Local Differential Privacy
    Sun, Xinyue
    Ye, Qingqing
    Hu, Haibo
    Duan, Jiawei
    Xue, Qiao
    Wo, Tianyu
    Zhang, Weizhe
    Xu, Jie
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 9850 - 9865
  • [39] Frequent Itemset Mining with Local Differential Privacy
    Li, Junhui
    Gan, Wensheng
    Gui, Yijie
    Wu, Yongdong
    Yu, Philip S.
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 1146 - 1155
  • [40] Improvement of Estimate Distribution with Local Differential Privacy
    Horigome, Hikaru
    Kikuchi, Hiroaki
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE, MDAI 2022, 2022, 13408 : 68 - 79