Sex Classification of Salmon Using Convolutional Neural Network

被引:0
|
作者
Kuramoto, Takumi [1 ]
Abe, Shuji [2 ]
Ishihata, Hiroaki [1 ]
机构
[1] Tokyo Univ Technol, Sch Comp Sci, Hachioji, Tokyo, Japan
[2] Tokyo Univ Technol, Sch Biosci & Biotechnol, Hachioji, Tokyo, Japan
来源
PROCEEDINGS OF THE 2020 14TH INTERNATIONAL CONFERENCE ON UBIQUITOUS INFORMATION MANAGEMENT AND COMMUNICATION (IMCOM) | 2020年
关键词
Salmon; sex classification; CNN; ternary classification;
D O I
10.1109/imcom48794.2020.9001787
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this study, we attempted to classify the sex of salmon using a convolutional neural network. We collected labeled(male/female) images of salmon and other fishes, and trained the VGG16 type neural network by implementing several data argumentation techniques, cropping the bounding box of salmon. In evaluation, the F value of the classification result was found to be satisfactory by more than 99%. We demonstrated the focus point of the neural network using Grad-CAM and the classification ability depending on the background processing.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Computer Vision Detection of Salmon Muscle Gaping Using Convolutional Neural Network Features
    Xu, Jun-Li
    Sun, Da-Wen
    FOOD ANALYTICAL METHODS, 2018, 11 (01) : 34 - 47
  • [2] MOLECULE CLASSIFICATION USING VISUALIZATION AND CONVOLUTIONAL NEURAL NETWORK
    Lakatos, Istvan
    Hajdu, Andras
    Harangi, Balazs
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 1695 - 1698
  • [3] Gemstone Classification Using Deep Convolutional Neural Network
    Chakraborty B.
    Mukherjee R.
    Das S.
    Journal of The Institution of Engineers (India): Series B, 2024, 105 (04) : 773 - 785
  • [4] Computer Vision Detection of Salmon Muscle Gaping Using Convolutional Neural Network Features
    Jun-Li Xu
    Da-Wen Sun
    Food Analytical Methods, 2018, 11 : 34 - 47
  • [5] Fingerprint Classification using a Deep Convolutional Neural Network
    Pandya, Bhavesh
    Cosma, Georgina
    Alani, Ali A.
    Taherkhani, Aboozar
    Bharadi, Vinayak
    McGinnity, T. M.
    2018 4TH INTERNATIONAL CONFERENCE ON INFORMATION MANAGEMENT (ICIM2018), 2018, : 86 - 91
  • [6] Classification of Tank Images Using Convolutional Neural Network
    Liu, Ying
    Yu, Yongbin
    Wang, Lin
    Nyima, Tashi
    Zhaxi, Nima
    Huang, Hang
    Deng, Quanxin
    PROCEEDINGS OF 2020 IEEE 4TH INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2020), 2020, : 210 - 214
  • [7] Word Recognition For Color Classification Using Convolutional Neural Network
    Tuasikal, Dyah Ayu Anggreini
    Nugraha, M. B.
    Yudhatama, Emilio
    Muharom, Ahmad Syahril
    Pura, Megantara
    PROCEEDINGS OF 2019 5TH INTERNATIONAL CONFERENCE ON NEW MEDIA STUDIES (CONMEDIA 2019), 2019, : 228 - 231
  • [8] Classification of Eye Tracking Data using a Convolutional Neural Network
    Yin, Yuehan
    Juan, Chunghao
    Chakraborty, Joyram
    McGuire, Michael P.
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 530 - 535
  • [9] Classification of Elephant Sounds Using Parallel Convolutional Neural Network
    Leonid, T. Thomas
    Jayaparvathy, R.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 32 (03) : 1415 - 1426
  • [10] Indonesia ancient temple classification using convolutional neural network
    Danukusumo, Kefin Pudi
    Pranowo
    Maslim, Martinus
    2017 INTERNATIONAL CONFERENCE ON CONTROL, ELECTRONICS, RENEWABLE ENERGY AND COMMUNICATIONS (ICCREC), 2017, : 50 - 54