Convective heat transfer and friction factor correlations of nanofluid in a tube and with inserts: A review

被引:126
作者
Sundar, L. Syam [1 ]
Singh, Manoj K. [1 ]
机构
[1] Univ Aveiro, Dept Engn Mecan, Ctr Tecnol Mecan & Automacao TEMA, P-3810193 Aveiro, Portugal
关键词
Correlations; Friction factor; Heat transfer coefficient; Inserts; Nanofluid; Plain tube; THERMAL-CONDUCTIVITY ENHANCEMENT; GLYCOL-BASED NANOFLUIDS; LAMINAR-FLOW; CIRCULAR TUBE; AL2O3/WATER NANOFLUID; AQUEOUS SUSPENSIONS; CARBON NANOTUBES; AL2O3; NANOFLUID; TURBULENT-FLOW; PRESSURE-DROP;
D O I
10.1016/j.rser.2012.11.041
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In the heat transfer area researches have been carried out over several years for the development of convective heat transfer enhancement techniques. The use of additives in the base fluid like water or ethylene glycol is one of the techniques applied to augment the heat transfer. Recently an innovative nanometer sized particles have been dispersed in the base fluid in heat transfer fluids. The fluids containing the solid nanometer size particle dispersion are called 'nanofluids'. The dispersed solid metallic or nonmetallic nanoparticles change the thermal properties like thermal conductivity, viscosity, specific heat, density, heat transfer and friction factor of the base fluid. Nanofluids are having high thermal conductivity and high heat transfer coefficient compared to single phase fluids. The enhancement in heat transfer coefficient with the effect of Brownian motion of the nanoparticles present in the base fluid. In this paper, a comprehensive literature on the correlations developed for heat transfer and friction factor for different kinds of nanofluids flowing in a plain tube under laminar to turbulent flow conditions have been compiled and reviewed. The review was also extended to the correlations developed for the estimation of heat transfer coefficient and friction factor of nanofluid in a plain tube with inserts under laminar to turbulent flow conditions. However, the conventional correlations for nanofluid heat transfer and friction factor are not suitable and hence various correlations have been developed for the estimation of Nusselt number and friction factor for both laminar and turbulent flow conditions inside a tube with inserts. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:23 / 35
页数:13
相关论文
共 101 条
[1]   AUGMENTATION OF HEAT TRANSPORT IN LAMINAR-FLOW OF POLYSTYRENE SUSPENSIONS .1. EXPERIMENTS AND RESULTS [J].
AHUJA, AS .
JOURNAL OF APPLIED PHYSICS, 1975, 46 (08) :3408-3416
[2]   Numerical study of laminar mixed convection of a nanofluid in horizontal curved tubes [J].
Akbarinia, A. ;
Behzadmehr, A. .
APPLIED THERMAL ENGINEERING, 2007, 27 (8-9) :1327-1337
[3]   Convection heat transfer of functionalized MWNT in aqueous fluids in laminar and turbulent flow at the entrance region [J].
Amrollahi, A. ;
Rashidi, A. M. ;
Lotfi, R. ;
Meibodi, M. Emami ;
Kashefi, K. .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2010, 37 (06) :717-723
[4]  
[Anonymous], 1975, P 3 NATL HEAT MASS T
[5]   Effect of particle size on the convective heat transfer in nanofluid in the developing region [J].
Anoop, K. B. ;
Sundararajan, T. ;
Das, Sarit K. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2009, 52 (9-10) :2189-2195
[6]   Convective heat transfer of nanofluids with correlations [J].
Asirvatham, Lazarus Godson ;
Raja, Balakrishnan ;
Lal, Dhasan Mohan ;
Wongwises, Somchai .
PARTICUOLOGY, 2011, 9 (06) :626-631
[7]   Numerical investigation on nanofluids turbulent convection heat transfer inside a circular tube [J].
Bianco, Vincenzo ;
Manca, Oronzio ;
Nardini, Sergio .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2011, 50 (03) :341-349
[8]  
Blasius H., 1908, Z. Angew. Math. Phys., V56, P1
[9]   Convective transport in nanofluids [J].
Buongiorno, J .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2006, 128 (03) :240-250
[10]   Experimental Studies on Heat Transfer and Friction Factor Characteristics of Al2O3/Water Nanofluid in a Circular Pipe Under Transition Flow With Wire Coil Inserts [J].
Chandrasekar, M. ;
Suresh, S. ;
Bose, A. Chandra .
HEAT TRANSFER ENGINEERING, 2011, 32 (06) :485-496