Graphene as catalyst support: The influences of carbon additives and catalyst preparation methods on the performance of PEM fuel cells

被引:98
作者
Marinkas, Angela [1 ]
Arena, Francesco [1 ]
Mitzel, Jens [1 ]
Prinz, Guenther M. [2 ,3 ]
Heinzel, Angelika [4 ]
Peinecke, Volker [4 ]
Natter, Harald [1 ]
机构
[1] Univ Saarland, D-66123 Saarbrucken, Germany
[2] Univ Duisburg Essen, D-47057 Duisburg, Germany
[3] CENIDE, D-47057 Duisburg, Germany
[4] Fuel Cell Res Ctr GmbH, ZBT Duisburg, D-47057 Duisburg, Germany
关键词
AQUEOUS DISPERSIONS; REDUCTION; GRAPHITE; OXIDE; ELECTROCATALYSTS;
D O I
10.1016/j.carbon.2013.02.043
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The reduction of the platinum amount for efficient PEM (polymer electrolyte membrane) fuel cells was achieved by the use of graphene/carbon composites as catalyst support. The influences of the carbon support type and also of the catalyst preparation method on the fuel cell performance were investigated with electrochemical, spectroscopic and microscopic techniques. Using pure graphene supports the final catalyst layer consists of a dense and well orientated roof tile structure which causes strong mass transport limitations for fuels and products. Thus the catalysts efficiency and finally the fuel cell performance were reduced. The addition of different carbon additives like carbon black particles or multi-walled carbon nanotubes (MWCNT) destroys this structure and forms a porous layer which is very efficient for the mass transport. The network structure of the catalyst layer and therefore the performance depends on the amount and on the morphology of the carbon additives. Due to optimizing these parameters the platinum amount could be reduced by 37% compared to a commercial standard system. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:139 / 150
页数:12
相关论文
共 48 条
[11]   Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering [J].
Guinea, F. ;
Katsnelson, M. I. ;
Geim, A. K. .
NATURE PHYSICS, 2010, 6 (01) :30-33
[12]   Electrochemical impedance investigation of proton exchange membrane fuel cells experienced subzero temperature [J].
Hou, Junbo ;
Song, Wei ;
Yu, Hongmei ;
Fu, Yu ;
Shao, Zhigang ;
Yi, Baolian .
JOURNAL OF POWER SOURCES, 2007, 171 (02) :610-616
[13]   Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries [J].
Hou, Junbo ;
Shao, Yuyan ;
Ellis, Michael W. ;
Moore, Robert B. ;
Yi, Baolian .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (34) :15384-15402
[14]   Layer-by-Layer Films of Graphene and Ionic Liquids for Highly Selective Gas Sensing [J].
Ji, Qingmin ;
Honma, Itaru ;
Paek, Seung-Min ;
Akada, Misaho ;
Hill, Jonathan P. ;
Vinu, Ajayan ;
Ariga, Katsuhiko .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (50) :9737-9739
[15]   Graphene: carbon in two dimensions [J].
Katsnelson, Mikhail I. .
MATERIALS TODAY, 2007, 10 (1-2) :20-27
[16]   Microheater based on magnetic nanoparticle embedded PDMS [J].
Kim, Jeong Ah ;
Lee, Seung Hwan ;
Park, Hongsuk ;
Kim, Jong Hyo ;
Park, Tai Hyun .
NANOTECHNOLOGY, 2010, 21 (16)
[17]   Measurement of the elastic properties and intrinsic strength of monolayer graphene [J].
Lee, Changgu ;
Wei, Xiaoding ;
Kysar, Jeffrey W. ;
Hone, James .
SCIENCE, 2008, 321 (5887) :385-388
[18]   Processable aqueous dispersions of graphene nanosheets [J].
Li, Dan ;
Mueller, Marc B. ;
Gilje, Scott ;
Kaner, Richard B. ;
Wallace, Gordon G. .
NATURE NANOTECHNOLOGY, 2008, 3 (02) :101-105
[19]   Carbon materials for drug delivery & cancer therapy [J].
Liu, Zhuang ;
Robinson, Joshua T. ;
Tabakman, Scott M. ;
Yang, Kai ;
Dai, Hongjie .
MATERIALS TODAY, 2011, 14 (7-8) :316-323
[20]   Single sheet functionalized graphene by oxidation and thermal expansion of graphite [J].
McAllister, Michael J. ;
Li, Je-Luen ;
Adamson, Douglas H. ;
Schniepp, Hannes C. ;
Abdala, Ahmed A. ;
Liu, Jun ;
Herrera-Alonso, Margarita ;
Milius, David L. ;
Car, Roberto ;
Prud'homme, Robert K. ;
Aksay, Ilhan A. .
CHEMISTRY OF MATERIALS, 2007, 19 (18) :4396-4404